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Many online platforms (e.g., Amazon and Groupon) offer time-locked sales campaigns as an innovative sell-

ing mechanism, whereby third-party vendors sell their products at a fixed price for a pre-specified length of

time. To alleviate customers’ uncertainty and to influence their inference about a product’s value, platforms

often display to upcoming customers some information about previous customers’ purchase decisions, which

are the platform’s proprietary observation. Using a dynamic Bayesian persuasion framework, we formulate

and study how a platform should optimally design its dynamic information provision strategy to maximize

its expected revenue. We establish an equivalent reformulation of the platform’s information design prob-

lem by significantly reducing the dimensionality of the platform’s message space and proprietary history.

Specifically, we show that it suffices for the platform to use only three messages in disclosing information:

a neutral recommendation that induces a customer to make her purchase decision according to her private

assessment about the product; and a positive (resp., negative) recommendation that induces a customer

to make the purchase (resp., not to make the purchase) by ignoring her private assessment. We also show

that the platform’s proprietary history can be represented by the net purchase position, a single-dimensional

summary statistic that computes the difference between the cumulative purchases and non-purchases made

by customers who receive the neutral recommendation from the platform. Subsequently, the platform’s prob-

lem can be formulated and solved efficiently as a linear program. Further, we propose and optimize over a

class of heuristic policies. The best heuristic policy, which we characterize analytically, is easy-to-implement,

simple-to-prescribe, and near-optimal policy. Specifically, this heuristic policy provides only neutral recom-

mendations to customers arriving up to a cut-off customer and provides only positive or negative recommen-

dations to customers arriving afterwards. The recommendation is positive if and only if the net purchase

position achieved right after the cut-off customer exceeds a threshold. Finally, we demonstrate that the best

heuristic policy improves the platform’s revenue over näıve policies commonly used in practice, such as the

no-disclosure and full-disclosure policies, and captures at least 90% of the optimal revenue.

Key words : revenue management; dynamic information provision; Bayesian inference; recommendation;

linear program; implementation
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1. Introduction

The recent surge of digital platform economy is bringing radical changes to how we socialize, trade,

and exchange information. In contrast to the businesses operated in a traditional economy, online

platforms such as Amazon, eBay and Groupon play the role of a market maker by establishing
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technology-based infrastructures that allow a large number of independent vendors to sell their

products and services to a broad range of customers. While these platforms have limited control over

tangible instruments such as prices, they can manifest their value by facilitating and controlling the

information flow among market participants in real time at no cost, a point we aim to demonstrate

in this paper.

To that end, we focus on one particular application innovated by these online platforms, which we

refer to as a time-locked sales campaign. This selling mechanism allows third-party vendors to sell

their products at a fixed price for a pre-specified length of time, e.g., from a few hours to a few days.

As the campaign progresses, the platform displays the time remaining in the campaign. Platforms

charge vendors a pre-negotiated commission, i.e., a fraction of the sales.1 However, customers

often face uncertainty about the value of products, deterring them from making the purchase.

This uncertainty is particularly significant for new products, products with nuanced features, or

products that cater to a niche market. The lack of physical showrooms in the online environment

further exacerbates the issue. As such, platforms face the challenge to maximize the sales (i) in

the presence of customers’ skepticism about the products, (ii) within a limited amount of time

(iii) without being able to maneuver the price. To overcome this challenge, platforms may offer

some information about historical purchase decisions made by previous consumers to upcoming

customers. The format and granularity of information provided vary across different platforms.

Motivated by the prevalence and heterogeneity of such practice, we study how a platform should

design its information provision strategy for a time-locked sales campaign.

Figure 1 Key information provided for a time-locked sales campaign on Groupon.com.

1 For example, Groupon, eBay and Amazon charge a commission rate of 8-20, 2-12 and 5-20 percent, respectively.
Some platforms also charges a fixed fee per transaction, which essentially inflates the commission rate.
https://marketplace.groupon.com/support/solutions/articles/5000808521-deal-commission-rates

https://www.ebay.com/help/selling/fees-credits-invoices/selling-fees?id=4364

https://sellercentral.amazon.com/gp/help/external/200336920

https://marketplace.groupon.com/support/solutions/articles/5000808521-deal-commission-rates
https://www.ebay.com/help/selling/fees-credits-invoices/selling-fees?id=4364
https://sellercentral.amazon.com/gp/help/external/200336920
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The time-locked sales campaign can be best exemplified by Groupon’s “Deals of the Day,” as

illustrated in Figure 1.2 Customers visiting a deal’s web page are presented with some descriptive

information about the product (including verbal introduction, visual demonstration, existing prod-

uct ratings, warranty terms, and vendor identity) as well as the price, which is set by the vendor

typically at a discounted level. While these information remain constant for the entire duration of

the campaign, Groupon also dynamically updates and provides customers with the time remaining

to claim the deal as well as some, possibly vague, information about the up-to-date visits and sales

data since the inception of the campaign. For example, in a time-locked sales campaign shown in

Figure 1, Groupon displayed “1,250+ viewed today” in gray when approximately 10 hours left to

claim the deal (see the left panel of Figure 1), whereas the message changed to “Selling fast!” in

red 4 hours later in the same campaign (see the right panel of Figure 1).

(a) Amazon.com (b) Woot.com

Figure 2 Key information provided for a time-locked sales campaign on Amazon.com and Woot.com.

Other platforms adopt different strategies for their time-locked sales campaigns and vary in the

granularity of information provided. For example, Amazon’s “Deal of the Day” only demonstrates

how much time left to claim the deal, as shown in Figure 2(a).3 On the other hand, Woot, a daily

deals website owned by Amazon, discloses the full time-series sales data as illustrated by Figure

2(b). As such, the information provided by Groupon is more granular than that by Amazon’s “Deal

of the Day” but is less granular than that by Woot.

2 The complete screenshots of the example campaign web pages in this section are documented in Appendix D.

3 Amazon also hosts another time-locked sales campaign called “Lightening Deal,” where it shows customers the
percentage of inventory that has been sold. In this paper, we only consider campaigns without inventory constraint.
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A fundamental premise behind the platform’s strategy is the notion of social learning. Each

customer has access to a signal somewhat indicative of the product value, based on her research or

word-of-mouth information about the same or a similar product. The signal is likely to be optimistic

if the product is truly of high value and pessimistic otherwise. While each customer’s signal is her

private information, her purchase decision would reflect the nature of her signal and help other

customers revise their valuation of the product. However, customers cannot directly observe each

other’s purchase decisions, which are the platform’s proprietary information. Thus, to influence

upcoming customers’ inference about the product value and subsequently their purchase likelihood,

the platform can leverage its information advantage and strategically provide some information

about the previous customers’ purchase decisions. In essence, the platform can engineer customers’

social learning process through the design of its information provision strategy.

In this paper, we model an online time-locked sales campaign visited by sequentially arriving

customers, and capture the customers’ social learning process using Bikhchandani et al.’s (1992)

framework (in Section 3). The platform has proprietary observation of each customer’s purchase

decision, which is not directly observable to other customers. Using a dynamic Bayesian persuasion

game framework (e.g., Kremer et al. 2014), the platform’s problem is to maximize its revenue by

designing an information provision strategy that dynamically displays a message to an upcoming

customer based on its proprietary information of previous customers’ purchase decisions.

The platform’s problem stated above is very general, since the platform can use any specific

format of messages (e.g., summary statistics of the purchase history) and can dynamically adjust

the information provided to the customers during the campaign. As a key methodological contribu-

tion, we establish an equivalent reformulation of the platform’s problem by significantly reducing

the dimension of its message space and simplifying the representation of its proprietary purchase

history (in Section 4). Specifically, we show that the platform can search for its optimal informa-

tion provision strategy within the class of recommendation policies that use only three messages: a

neutral recommendation that induces the customer to make the purchase if and only if she receives

an optimistic private signal about the product, and two affirmative recommendations—a positive

recommendation and a negative recommendation—that induce the customer to make the purchase

and not to make the purchase, respectively, regardless of her private signal. We then show that

the payoff-relevant information embedded in the platform’s proprietary history can be summarized

through a one-dimensional summary statistic, which we termed as the platform’s net purchase

position. The net purchase position computes the difference between the cumulative numbers of

purchases and non-purchases made by customers who have thus far been offered the neutral recom-

mendation. Combining these two reductions, we are able to represent the platform’s information

provision strategy as a mapping from the net purchase positions to probability distributions over
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the three recommendations for each customer. Subsequently, the platform’s problem is formulated

and solved efficiently as a linear program.

For the ease of implementation, we also propose the class of NA-partition policies, which partition

each customer according to their order of arrival, either (i) as a customer, to whom the platform

can only provide the neutral recommendation regardless of the net purchase position, or (ii) as

a customer, who can only be provided with an affirmative recommendation, possibly randomized

between the positive and negative recommendations depending on the net purchase position. We

find that the optimal NA-partition policy front-loads all neutral recommendations and then back-

loads the affirmation recommendations (in Section 5). In other words, the heuristic policy provides

neutral recommendations to customers arriving up to a cut-off customer and provides affirmative

recommendations to customers arriving afterwards. The affirmative recommendation is positive if

and only if the net purchase position exceeds a threshold. We fully characterize both the cut-off

customer and the threshold. In fact, the optimal NA-partition policy resembles the information

provision strategy employed by Groupon’s “Deals of the Day.” Our comprehensive numerical studies

demonstrate that the optimal NA-partition policy brings significant revenue improvement (i.e., by

20% to 80% for a wide range of parameters) over the näıve policies, such as the no-disclosure policy

used by Amazon’s “Deal of the Day” and the full-disclosure policy used by Woot. In addition, this

heuristic policy captures at least 90% of the revenue under the optimal recommendation policy (in

Section 6).

2. Related Literature

Three streams of literature informed and inspired our research: revenue management, social learn-

ing, and information design. Here, we briefly review and discuss our contribution to each stream.

The classical revenue management research has focused predominantly on the pricing and inven-

tory instruments as two key levers to maximizing firms’ profit (see Talluri and Van Ryzin 2006, Özer

and Phillips 2012, for a comprehensive survey). As a typical premise therein, customers know their

private types such as valuation of the product (whereas the seller does not) and hence they have

the informational advantage over the seller, who can then leverage pricing and inventory related

decisions to screen customers’ private valuation (e.g., Courty and Hao 2000, Gallego et al. 2008,

Kuo et al. 2011, Bergemann et al. 2018, Chen et al. 2018, Chen and Shi 2019). As illustrated in

the introduction, internet-based selling platforms may have reversed such informational advantage

by being able to collect massive information regarding the supply and demand of products sold

on a platform, posing new research challenges and opportunities as to how to best utilize those

proprietary information for revenue management. Drakopoulos et al. (2018) and Lingenbrink and

Iyer (2018) are among the first researchers to study the use of information provision as a novel
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instrument to raise revenue. They demonstrate strategic provision of (obfuscated) inventory and

demand information can create availability risk and competition among buyers, who will then be

induced to make early purchases. Following the same school of thoughts but in a completely dif-

ferent setting, we study how an online platform can provide information about its historical sales

data to induce upcoming customers’ purchases.

The fundamental linkage between the previous and upcoming customers is the notion of social

learning (see Chamley 2004, for a comprehensive survey). In retail and service industries, such

social learning takes the form of customer reviews, product ratings, and historical sales information

that have become easily accessible with the advance of information technology.4 Thus, a burgeoning

literature emerges to examine various implications of social learning on revenue management theory

and practice, ranging from pricing policies (Yu et al. 2015, Crapis et al. 2016, Papanastasiou and

Savva 2016, Ifrach et al. 2019), control of service rate (Veeraraghavan and Debo 2009), inventory

and product line strategies (Hu et al. 2015), to product design and introduction (Feldman et al.

2018, Araman and Caldentey 2016). This literature studies the setting in which both the seller and

customers observe the information generated by the previous customers. This setting essentially

corresponds to our full disclosure benchmark, in which the platform discloses the entire history

of previous customers’ observations and decisions regarding the product. Going beyond the full

disclosure setting, Besbes and Scarsini (2018), Acemoglu et al. (2019) and Garg and Johari (2019)

investigate whether and how fast social learning can reveal the true value of the product by using

other information provision rules (e.g., summary statistics of the past reviews/ratings). In our

work, we share with all the authors above the premise that social learning plays an instrumental

role in resolving customers’ uncertainty about the value of a product or service.5

Of particular interest to our research is the seminal work by Bikhchandani et al. (1992), whose

social learning framework forms the building block of our model. However, different from their

model, customers in our setting cannot directly observe the actions taken by previous customers.

Instead, there is an information designer (i.e., the platform) who can mediate social learning

by collecting and strategically providing (possibly obfuscated) historical purchase information,

a framework that has recently been explored. For example, Che and Hörner (2018) study how

a platform can utilize information provision to incentivize early exploration of a single product

4 Instead of reviews and ratings, we focus on actual sales data as the platform’s source of information because of two
reasons. First, it is a well-known empirical fact that reviews and ratings typically suffer from various statistical biases
and manipulation, and hence are not reliable in reflecting the true value of the product (e.g., Li and Hitt 2008, Hu
et al. 2017, Chen et al. 2019). Second, a time-locked sales campaign is typically of short duration and the customers
may even not be able to receive the product before the campaign is concluded. Hence, new reviews or ratings are not
generated during the campaign.

5 That said, other plausible explanations have been put forth to rationalize the disclosure of sales or reviews from
previous customers, such as network effects (Hu et al. 2018) and signaling motivation (Subramanian and Rao 2016).
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by abstracting the designer’s information flow into a (two-state) exponential bandit. In a two-

product setting, other researchers (e.g., Kremer et al. 2014, Papanastasiou et al. 2018, Bimpikis

and Papanastasiou 2019) examine the information provision as an incentive instrument to foster

experimentation of the under-explored product for a social welfare maximizing platform. Different

from our setting, all these papers assume that the platform fully observes any signal generated

by customers’ consumption of the product and hence the customers do not possess any private

information. We, on the other hand, model each customer to have a private signal that is imperfectly

indicative of the product’s value. This framework allows the platform’s proprietary information to

have a richer dynamic structure (which we capture through the notion of net purchase position),

differentiating us from previous research.

From the methodological perspective, our modeling framework belongs and contributes to the

fast-growing area of research on information design pioneered by Kamenica and Gentzkow (2011).

Most recent research including ours aims to extend Kamenica and Gentzkow’s (2011) static setting

to dynamic ones for a variety of application contexts, such as Kremer et al. (2014), Renault et al.

(2017), Ely (2017), Che and Hörner (2018), Alizamir et al. (2019), to name a few. As in all these

papers, customers in our model are myopic and only optimize a single-period decision. However,

most of these papers assume that receivers are long-lived in that they are able to observe messages

provided by the designer from the beginning of the time horizon and hence their belief becomes

a state variable in the designer’s dynamic program. To capture the nature of the online platform,

we instead model receivers as short-lived agents who can only observe the information provided to

them in the periods of their arrival but not those provided to the previous customers, rendering

the receivers’ belief to be the entire distribution of the designer’s proprietary history.

3. Model

In a time-locked sales campaign, an online platform (e.g., Groupon) allows a third-party vendor

to sell a product to customers visiting the platform over a finite time horizon of length T . The

vendor sets a constant price, denoted as p, for the entire selling horizon; thus, the platform has

no control over the price. The platform profits from each sale through a pre-specified commission

rate, a fraction of the selling price, which we normalize to 1 without loss of generality. The vendor

receives the rest of the payments and is responsible for fulfilling the order. Hence, the vendor’s

revenue is proportional to the platform’s revenue. To maximize its revenue, the platform’s goal is

to generate as many sales as possible. In this paper, we take the platform’s perspective and focus

on the strategic interaction between the platform and customers.

When selling an innovative or a relatively nuanced product, an online time-locked sales campaign

typically faces the challenge of resolving customers’ uncertainty about the product’s value at the
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time of purchase (before consumption) due to (i) the lack of showroom for customers to experience

the product and (ii) insufficient amount of time for the platform to collect and display reviews from

customers, who have made purchases.6 For simplicity, the customer enjoys a consumption utility,

which we normalize to 1, from a valuable or fitting product; otherwise, the customer enjoys zero

consumption utility. We thus model the customer’s a priori uncertain utility from consuming the

product as a binary random variable V ∈ {0,1}. Customer can purchase the product and receive the

payoff, V −p; or she does not purchase the product and receive zero payoff. To rule out trivial cases,

we normalize the price to p ∈ (0,1) so that the customer’s net payoff is positive if the purchased

product is valuable and negative otherwise.

A priori, neither the platform nor customers know the exact value of V. At the beginning of

the selling horizon (t= 0), the vendor publishes on the platform some general information about

the product, such as verbal description, virtual demonstration or even past customers’ reviews

and testimony, and these information remains constant throughout the selling horizon. Based on

these public information, the platform and all customers form a common prior expectation E[V ] =

v0 ∈ [0,1], i.e., V = 1 with probability v0 and V = 0 with the complimentary probability 1− v0. In

summary, the platform and all customers are endowed with three exogenous parameters (T,p, v0),

which define a time-locked sales campaign.

3.1. Dynamics and information

We divide the selling horizon into discrete time periods according to customers’ arrival so that the

time stamp also indexes the customer’s order of arrival. That is, customer t ∈ {1, . . . , T}, the cus-

tomer arriving in time period t, is the t-th customer visiting the platform. Since the sales campaign

is time-locked (i.e., the platform displays the time remaining in the campaign or equivalently the

duration of the campaign that has elapsed), each customer knows her order of arrival.7 Besides

the general information about the product (represented by v0), customers are heterogeneous and

form their private assessment of the product by researching or acquiring word-of-mouth informa-

tion about the same or similar product from some exogenous information channel (e.g., search

engine, social media). Such private assessment can be optimistic or pessimistic in that it induces

a customer to update her expectation of V above or below the prior v0, respectively.

Formally, we represent customer t’s private assessment as a binary signal St taking symbolic

values 1 and −1, which represent an optimistic and pessimistic assessment, respectively. While the

6 As the duration of these campaigns is short, products may not be even delivered until after the campaigns are
concluded. Thus, customers will not be able to provide their reviews in time during the progress of the campaigns.

7 Here, we assume that customers have perfect knowledge of their order of arrival. In practice, this assumption holds
as many platforms also display the up-to-date count of visits. In theory, a customer can infer her order of arrival
from her arrival time if customers arrive at a constant rate. In the literature, Kremer et al. (2014) make the same
assumption and demonstrate that it is innocuous. Note that each customer has no control over her order of arrival,
as they cannot control other customers’ arrivals.
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realization of St is customer t’s private information, its distribution (conditional on the product

value V ) is public knowledge. Specifically, following Bikhchandani et al. (1992), we model St as an

identical and independent binary random variable with the following distribution conditional on

the value V :

P [St = 1 | V = 1] = P [St =−1 | V = 0] = q ∈ (1/2,1], (1)

where q is referred to as the signal’s precision and measures how much indicative a customer’s

private signal St is of the value V .8 According to the Bayes Rule, an optimistic signal improves the

customer’s expectation above v0 (i.e., E [V | St = 1] = v0q
v0q+(1−v0)(1−q)

> v0) and a pessimistic signal

lowers her expectation below v0 (i.e., E [V | St =−1] = v0(1−q)
v0(1−q)+(1−v0)q

< v0). Notably, one could

asymptotically learn the true value of V by observing a sufficient number of such private signals.

The platform has an information advantage over customers in that the platform observes the

purchase decisions of all customers who have visited the platform as well as all information provided

to them. Hence, the platform can leverage the better information it accrues and decides when and

how to release such information so as to persuade an upcoming customer into purchase. Formally,

let mt denote the information that the platform provides to customer t. Given such information

(in addition to v0 and St), customer t maximizes her expected payoff by deciding whether or not

to purchase. We denote customer t’s decision as at ∈ {1,−1}, where at = 1 and at =−1 denote a

purchase and a non-purchase, respectively. Thus, we say that customer t follows her private signal

St to make her purchase decision if at = St, but it is possible for at 6= St, i.e., she dismisses her

private signal when making her purchase decision. An arriving customer cannot directly observe the

purchase decisions made by or the information provided to previous customers. Hence, customer

t’s purchase decision at and whatever information/message mt platform provides to customer t

are the platform’s proprietary information. We denote the platform’s proprietary history up to

customer t as Ht := {(ms, as) : s < t} with the convention that H1 = ∅, and the space of all possible

proprietary histories as H := {Ht : t= 1,2, · · · , T} .

3.2. Platform’s information provision policy

Next, we describe how the platform generates the information mt provided to each customer t.

For generality, we allow the platform to dynamically adjust the information provided to different

customers and do not impose any restriction on the format of such information (e.g., verbal or

visual messages are allowed). This allows our framework to capture a wide range of applications

including those illustrated in the Introduction (see Figures 1 and 2). Specifically, the platform

8 The signal’s precision depends on the quality of the information channel, through which customers acquire their
signals, and hence is independent of the product value.
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designs and commits to9 an information provision policy, denoted as (σ,M) , which maps each

proprietary up-to-date history Ht ∈H to a probability distribution σ(.|Ht) ∈∆(M) over message

space M. The information provided to customer t is then a particular message mt ∈M drawn

according to probability distribution σ(.|Ht). For notational simplicity, we sometimes make the

message space M implicit and abbreviate (σ,M) as σ.

It is worthwhile to describe two commonly used näıve policies as polar examples of the plat-

form’s information provision policies. On one extreme, a full-disclosure policy, which resembles the

strategy adopted by Woot, simply reveals to each upcoming customer all the previous customers’

purchase decisions in its entirety; that is, M =H and σ(Ht|Ht) = 1 for all Ht and all t. On the

other extreme, a no-disclosure policy, which resembles the strategy adopted by Amazon’s “Deal of

the Day,” completely conceals the platform’s proprietary history by providing a constant message

for all Ht and all t; that is, M consists of a singleton, say m0, and σ(m0|Ht) = 1. In this way,

customers are not able to make any inference about the platform’s proprietary history and hence

such a policy discloses no information. We characterize the platform’s revenue performance under

these two näıve policies in Section 6.2.

3.3. Customers’ and the platform’s objectives

The platform provides message mt ∈M to customer t (with a prior expectation v0) upon her

arrival. Combining these information with her private signal St, customer t updates her belief about

the product value V, and purchases the product (at = 1) if and only if her updated expectation is

not smaller than the price:10

at = 1 if and only if E [V | St,mt, σ]≥ p, for all t. (2)

Following the convention in the literature, we assume that when the customer is indifferent between

two actions, she purchases the product.

In anticipation of each customer’s response provided in Equation (2), the platform’s objective

is to maximize its total expected sales over the entire selling horizon, by designing an information

provision policy σ among all policies. That is, the platform’s problem can be formulated as

π? := max
σ

p E

[
T∑
t=1

1[at = 1]

∣∣∣∣∣ σ
]
. (3)

9 The platform’s commitment means that the platform designs its information provision policy upfront at the onset
of the campaign prior to the realization of its proprietary history, and abides by it as its proprietary history unravels.
As articulated in the literature (see Section 2), this commitment assumption is particularly appropriate for online
platforms that have reputational concerns and have to automate and computerize the implementation of their infor-
mation provision for a large number of items on sale and to a wide-spread audience in real time. Further, when the
sender has commitment power, she is always better off using it. Indeed, such commitment establishes the meaning of
the platform’s message, which would otherwise be a cheap talk and lack communicative power.

10 Throughout the paper, all probabilities or expectations are conditional on the publicly known model primitive
parameters {T,p, q, v0}, but such dependence is kept implicit for expositional simplicity.
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To summarize, we illustrate the sequence of events in Figure 3. At the campaign’s onset, campaign

characteristics (T,p, v0) are defined and the platform designs an information provision policy σ

according to Equation (3). Customer t arrives with her private signal St to the platform, receives the

message mt from the platform, and then makes her purchase decision at according to Equation (2).

The platform updates its proprietary history Ht+1 =Ht ∪{mt, at} and time moves on to the point

when customer t+ 1 arrives at the platform. This sequence repeats until the campaign concludes

with customer T .

1

(m1, a1)

t− 1

(mt−1, at−1)

t

Ht σ(Ht) mt

St
at

customer
0

(p, v0, σ)

T

Figure 3 Sequence of events.

4. Reformulation and Solution of the Platform’s Problem

The platform’s problem expressed in Equation (3) poses significant challenges to solve due to its full

generality. In this section, we establish an equivalent formulation that is mathematically solvable.

The key methodological innovation to achieve this goal consists of shrinking the dimension of the

message space (through a recommendation policy) and also simplifying the representation of the

platform’s proprietary history (through net purchase position). Along the way, we also uncover

important economic insights and tradeoffs faced by the platform.

4.1. Recommendation policies and net purchase positions

To reduce the dimension of the message space M, we first characterize customer t’s purchase

decision specified in Equation (2) in terms of her interim expectation E [V |mt, σ] . This interim

expectation represents customer t’s perceived product value based only on the information mt the

platform provides (that is, without conditioning on her private signal St).

Proposition 1 (Customer’s purchase decision). Customer t’s purchase decision is

at =

 1, if E [V |mt, σ]∈ [v∗∗,1],
St, if E [V |mt, σ]∈ [v∗, v∗∗],
−1, if E [V |mt, σ]∈ [0, v∗],

(4)

where thresholds v∗ and v∗∗ are given by

v∗ :=
p(1− q)

p(1− q) + (1− p)q < p< v
∗∗ :=

pq

pq+ (1− p)(1− q) . (5)
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Proposition 1 follows from the Bayes rule. When the information provided by the platform does

not adequately resolve the customer’s uncertainty (i.e., when her interim expectation is between

v∗ and v∗∗), customer follows her private signal St to make the purchase decision (i.e., at = St).

In this case, the customer purchases the product following an optimistic signal (i.e., St = 1) and

does not purchase following a pessimistic signal (i.e., St =−1). In contrast, when the information

provided by the platform enables the customer to form a sufficiently conclusive belief (i.e., her

interim expectation is either above v∗∗ or below v∗), the customer ignores her private signal St

and makes the purchase decision according to her interim expectation. That is, she purchases the

product if her interim expectation is above v∗∗, and does not purchase if it is below v∗, regardless

of the value of St. An important consequence of Proposition 1 is the following corollary.

Corollary 1 (Optimal policy for v0 6∈ [v∗, v∗∗)). For v0 6∈ [v∗, v∗∗), any information provi-

sion policy is optimal for the platform. In particular, if v0 ≥ v∗∗, all customers make the purchase

and the platform’s profit is π? = pT ; if v0 < v∗, none of the customers make the purchase and the

platform’s profit is π? = 0.

Corollary 1 shows that the platform’s information design problem has a trivial solution when

the common prior expectation v0 6∈ [v∗, v∗∗). To see this result, we note that the first customer’s

interim expectation is basically the prior expectation v0, and hence, by Proposition 1, she purchases

(resp., does not purchase) the product if v0 ≥ v∗∗(resp., v0 < v
∗∗) regardless of her private signal St.

Consequently, the platform learns no new information from the first customer’s purchase decision

beyond prior expectation v0. Fully aware of this fact, the second customer does not interpret the

platform’s second message m2 beyond prior expectation v0 and then behaves the same as the first

customer. So do all subsequent customers, leading to Corollary 1. In other words, when customers

do not have much prior uncertainty about the product value V, there is no room and need for

the platform to manage its information provision to influence customers’ purchase decisions. In

particular, the platform can simply provide a constant message or no message at all throughout the

campaign in this case. For this reason, the rest of paper will focus only on the parametric region

such that v0 ∈ [v∗, v∗∗), even though the solution methodology developed below equally applies to

the complementary case.

Proposition 1 classifies the customer’s purchasing strategy into three categories given by Equation

(4). As such, we can equate any message provided by the platform to one of the three incentive

compatible recommendations, symbolically denoted as {1,0,−1}: a positive recommendation mt = 1

that induces customer t to purchase the product regardless of her private signal (at = 1), i.e.,

E [V |mt = 1, σ]≥ v∗∗; (ICσ
1 )
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a neutral recommendation mt = 0 that induces customer t to follow her private signal to make the

purchase decision (at = St), i.e.,

v∗ ≤E [V |mt = 0, σ]≤ v∗∗; (ICσ
0 )

and a negative recommendation mt = −1 that induces customer t not to purchase the product

regardless of her private signal (at =−1), i.e.,

E [V |mt =−1, σ]≤ v∗. (ICσ
−1)

Definition 1. We define any information provision policy (σ,M) as a recommendation policy, if

its message space consists only of the three incentive compatible recommendationsM := {1,0,−1} .
Since, following either a positive or negative recommendation, a customer makes a definitive pur-

chase decision irrespective of her private signal, we refer to a positive or negative recommendation

as an affirmative recommendation.

The three incentive compatibility (IC) constraints (ICσ
1 )-(ICσ

−1) ensure that each recommendation

induces a customer’s interim expectation that is consistent with the purchase decision intended

by the platform. In other words, the IC constraints establish the credibility of the platform’s

recommendations. Specifically, upon a positive (resp., negative) recommendation mt = 1 (resp.,

mt = −1), customer t will form her interim expectation to be above v∗∗ (resp. below v∗) and

subsequently make the purchase (resp., not make the purchase) regardless of her private signal

St. Upon a neutral recommendation mt = 0, customer t will form her interim expectation to be

between v∗ and v∗∗ and subsequently follow her private signal St to make the purchase decision

(i.e., at = St).

Our next proposition formally establishes that restricting the search for the optimal information

provision policy within the class of recommendation policies is without loss of generality.

Proposition 2 (Sufficiency of recommendation policy). For any information provision

policy, there exists a recommendation policy that induces the same purchase decisions from all

customers and the same expected revenue for the platform.

Proposition 2 drastically reduces the dimension of the message space in the platform’s informa-

tion provision policy. In spirit, this result is akin to the Revelation Principle in classical mechanism

design problems, which allows the principal to reduce the dimension of mechanism space to that

of the agent’s private information. In fact, the sufficiency of recommendation policies is known for

static Bayesian persuasion games (Kamenica and Gentzkow 2011), whereby one can establish the

payoff equivalence of recommendation policies through an argument similar to the Revelation Prin-

ciple. In our dynamic setting, we have to additionally show that the reduction to recommendation
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policies does not diminish the richness of information that the platform can potentially learn from

customers’ purchase decisions; see the proof of Proposition 2 in Appendix B.

It is worth pointing out that the particular specification of the message space asM= {1,0,−1}
is only for symbolic purpose and notational convenience. Such a recommendation policy can be

implemented in practice by using messages in natural language and defining upfront the rule to

generate these messages. For instance, message 1 can be framed as encouraging words such as “must

buy”; message 0 can be framed as a modest suggestion such as “worth a try”; and message −1

can simply be silence.11 Furthermore, the platform may leverage the time of providing a message

as part of the message itself: verbally or visually identical messages that are provided to different

customers may be interpreted as different recommendations. Namely, IC constraints (ICσ
1 )-(ICσ

−1)

entail different regulations on the recommendation policy for different customers.

Our next step toward obtaining the equivalent formulation for the platform’s problem is to

identify an efficient representation of platform’s proprietary history, which is a complex object with

increasing dimension as the campaign progresses. The following proposition achieves this goal.

Proposition 3 (Sufficiency of net purchase position). The platform’s expectation of the

product value V conditional on its proprietary history Ht generated by its recommendation policy

σ is

E [V |Ht, σ] =
v0

v0 + (1− v0)( 1−q
q

)N(Ht)
, (6)

where the platform’s net purchase position up to customer t is defined as12

N(Ht) :=
∑

(ms,as)∈Ht

as (1− |ms|)∈ {−(t− 1), · · · ,0, · · · , t− 1} . (7)

The significance of Proposition 3 lies in showing that the payoff-relevant information embed-

ded in the platform’s proprietary history is succinctly captured by a single-dimensional summary

statistic of that history; that is, the net purchase position N(Ht) as defined in Equation (7). Net

purchase position computes the difference between the cumulative numbers of purchases and non-

purchases made by customers who have thus far been offered a neutral recommendation. Note

that, the net purchase position N(Ht) is bounded by −(t−1) and t−1. Recall that the platform’s

11 We remark that the firm may need to make negative recommendations (i.e., mt =−1), which lead to no purchase
for sure, so as to keep its positive and neutral recommendations credible. Imagine a firm that only makes positive rec-
ommendations regardless of its proprietary history. Then the positive recommendation from such a firm is completely
uninformative to the customers, who in turn will not necessarily follow it (i.e., (ICσ1 ) is violated). Rather, if the firm
makes negative recommendations for some realizations of its proprietary history, then a positive recommendation
can carry useful information to persuade the customers to make purchase (i.e., (ICσ1 ) is satisfied). We note that the
practical implementation of the negative recommendation does not need to take the form of demoting a product and
can simply be not promoting a product, as will be illustrated at the end of Section 5.

12 We adopt the convention that empty summation equals 0.
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recommendations are incentive compatible: upon an affirmative recommendation (positive or neg-

ative), the customer finds it optimal to follow the recommendation and makes a purchase decision

by dismissing her private signal. Only upon a neutral recommendation, the customer makes a pur-

chase decision according to her private signal. In other words, the customer’s purchase decision

following an affirmative recommendation provides no new information for the platform to update

its belief about the product value V. In contrast, the customer’s purchase decision following a neu-

tral recommendation reveals the customer’s private signal, which the platform can use to revise

its proprietary belief about the value of the product. In particular, customer t′s purchase at = 1

(resp., no purchase at =−1) following a neutral recommendation mt = 0 must imply that she has

an optimistic assessment St = 1 (resp., a pessimistic assessment St =−1) about V, and hence the

platform’s expectation E [V |Ht, σ] increases (resp., decreases). Thus, the platform’s expectation

given in Equation (6) increases in the net purchase position.

Proposition 3 also reveals two observations. First, the platform faces the following tradeoff: A

neutral recommendation enables the platform to learn about the product value V by letting the

customer’s purchase decision reveal her private signal St. In contrast, an affirmative recommenda-

tion prevents the platform from learning about the product value V from the customer’s purchase

decision, as it persuades the customer into a definitive purchase decision (i.e., purchase or no pur-

chase) regardless of her private signal St. In other words, a neutral recommendation carries both

informational and fiscal value for the platform, whereas an affirmative recommendation has only

fiscal value but no informational value. Second, net purchase position essentially acts to classify

the platform’s proprietary histories according to the expectation they induce. That is, any two

proprietary histories Ht and H ′t′ , possibly of different length or even generated by different recom-

mendation policies (say σ and σ′), would induce the same expectation as long as they yield the

same net purchase positions, i.e., E [V |Ht, σ] = E [V |H ′t′ , σ′] , if N(Ht) = N(H ′t′). Therefore, the

payoff-relevant information embedded in Ht is completely summarized in N(Ht). For notational

simplicity, we denote the platform’s conditional expectation characterized by Equation (6) as

vn :=E [V |N(Ht) = n,σ] =
v0

v0 + (1− v0)( 1−q
q

)n
, for any integer n. (8)

4.2. Equivalent reformulation of the platform’s problem

Proposition 2 allows the platform to search for its optimal information provision policy within

the class of recommendation policies, and Proposition 3 allows us to represent the platform’s

proprietary history in terms of net purchase positions. Using these two results, we can now represent

a recommendation policy σ for each customer t as a mapping, denoted as rt, from the integer space

representing the set of net purchase positions n to a three-dimensional simplex representing the
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set of distributions over the recommendation messages M = {1,0,−1} . That is, for n = −(T −
1), . . . ,0, . . . , T − 1, and t= 1, · · · , T ,

rt(n) =
(
r1t (n), r0t (n), r−1t (n)

)
∈R3

+ with
∑

i∈{1,0,−1}

rit(n) = 1, (R)

where rit(n) = P [mt = i |N(Ht) = n] is the probability that the platform offers recommendation

i∈ {1,0,−1} to customer t, given a net purchase position n.

While the platform observes its net purchase position, an arriving customer cannot. Nonetheless,

given the recommendation policy r := {rt : t= 1, · · · , T} committed by the platform, each customer

t can form a belief (i.e., a probability distribution) about the net purchase position, which we

characterize in the following proposition.

Proposition 4 (Customer’s belief of net purchase position). Given a recommendation

policy r, let zt(n) := P [N(Ht) = n | r] represent customer t’s belief that the platform’s net purchase

position is n. Then, this belief can be obtained recursively by

zt(n) =
(
r1t−1(n) + r−1t−1(n)

)
zt−1(n) +un−1r

0
t−1(n− 1)zt−1(n− 1)

+ (1−un+1)r
0
t−1(n+ 1)zt−1(n+ 1), for t= 2, · · · , T, with z1(n) = 1[n= 0], (N)

for all n = −(T − 1), . . . ,0, . . . , T − 1, where zt(T ) = zt(−T ) = 0 for t = 1, · · · , T and un :=

P [St = 1 |N(Ht) = n] = qvn + (1− q)(1− vn).

Given a recommendation policy r, Equation (N) shows how customer t’s belief about the plat-

form’s net purchase position, z := {zt : t= 1, · · · , T}, evolves recursively. Note that the platform

arrives at the net purchase position n from three possible net purchase positions faced by the

previous customer t − 1 (corresponding to the three terms in Equation (N)). First, the current

net purchase position can remain the same as the previous one at n, if the platform provided an

affirmative recommendation (positive or negative) to customer t − 1 (because the net purchase

position only accounts for purchase decisions made upon the neutral recommendation). For cus-

tomer t−1, the net purchase position was n with probability zt−1(n), and the platform provided an

affirmative recommendation with probability r1t−1(n) + r−1t−1(n), leading to the first term in Equa-

tion (N). Second, the current net purchase position can increase to n from the previous one at

n− 1, if the platform offered a neutral recommendation to customer t− 1 and the customer made

a purchase. For customer t− 1, the net purchase position was n− 1 with probability zt−1(n− 1),

the platform provided a neutral recommendation with probability r0t−1(n− 1), and the customer

made a purchase (i.e., received an optimistic signal St−1 = 1) with probability un−1, leading to the

second term in Equation (N). The third term can be interpreted in a similar way. In essence, the
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platform’s net purchase position evolves according to a (non-homogeneous) random walk, whose

transition probability is regulated by the platform’s recommendation policy: an affirmative recom-

mendation keeps the net purchase position unchanged, whereas a neutral recommendation splits it

by one position above and below and hence disperses the customer’s belief about the net purchase

position.

Given the platform’s expectation of the product’s value in Proposition 3 and the customer’s belief

about the net purchase position in Proposition 4, customer t makes an inference about the product’s

value V from the platform’s recommendation according to the Bayes rule. For example, upon

receiving a positive recommendation mt = 1, customer t knows that the platform is at net purchase

position n with probability zt(n) and position n is pooled into message mt = 1 with probability

r1t (n). Subsequently, she forms her interim expectation as E [V |mt = 1, r] =
∑
n vnzt(n)r

1
t (n)∑

n zt(n)r
1
t (n)

. Thus,

IC constraint (ICσ
1 ) on page 12 can be equivalently expressed as∑

n

(vn− v∗∗)zt(n)r1t (n)≥ 0. (ICr
1)

By the same token, we can rewrite IC constraint (ICσ
0 ) as∑

n

(vn− v∗∗)zt(n)r0t (n)≤ 0, and
∑
n

(vn− v∗)zt(n)r0t (n)≥ 0, (ICr
0)

and (ICσ
−1) as ∑

n

(vn− v∗)zt(n)r−1t (n)≤ 0. (ICr
−1)

The IC constraints (ICr
1)-(IC

r
−1) ensure that each customer find it optimal to follow the platform’s

recommendations to make their purchase decisions. In particular, customer t makes a purchase

either upon receiving a positive recommendation, which occurs with probability
∑

n zt(n)r1t (n), or

upon receiving a neutral recommendation and an optimistic private signal St = 1, which occurs

with probability
∑

n zt(n)unr
0
t (n). Therefore, the platform’s expected revenue from customer t can

be expressed as

pE [1[at = 1] | r] = p
∑
n

zt(n)
[
r1t (n) +unr

0
t (n)

]
,

Taken altogether, we now obtain an equivalent reformulation of the platform’s problem in Equa-

tion (3) as follows:

π? = max
r,z

p
T∑
t=1

∑
n

zt(n)
[
r1t (n) +unr

0
t (n)

]
(9)

subject to (R), (N), (ICr
1), (ICr

0), and (ICr
−1),

whose solution is denoted as r? and z?.
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4.3. Solution to the platform’s problem

The platform’s problem in formulation (9) is not analytically solvable primarily due to the interac-

tion of zt(·) in Equation (N) with each customer’s incentive compatibility constraints (ICr
1)-(IC

r
−1).

Nonetheless, we are able to transform formulation (9) into a linear program and solve it efficiently,

as shown by the proposition below.

Proposition 5 (Optimal information provision policy). The optimal solution to formu-

lation (9) is given by

z?t (n) =
∑

i∈{1,0,−1}

yi?t (n), ri?t (n) =
yi?t (n)

z?t (n)
for i∈ {1,0,−1} if z?t (n)> 0, (10)

and r?t (n) being any vector satisfying Equation (R) if z?t (n) = 0, where y? is the solution to the

following linear program

π? = max
y≥0

p
T∑
t=1

T−1∑
n=−(T−1)

y1t (n) +uny
0
t (n) (11)

subject to
T−1∑

n=−(T−1)

(vn− v∗∗)y1t (n)≥ 0,
T−1∑

n=−(T−1)

(vn− v∗)y−1t (n)≤ 0,

T−1∑
n=−(T−1)

(vn− v∗∗)y0t (n)≤ 0,
T−1∑

n=−(T−1)

(vn− v∗)y0t (n)≥ 0, for t= 1, · · · , T ;∑
i∈{1,0,−1}

yit(n) = y1t−1(n) + y−1t−1(n) +un−1y
0
t−1(n− 1) + (1−un+1)y

0
t−1(n+ 1)

with y0t−1(−T ) = y0t−1(T ) = 0 and
∑

i∈{1,0,−1}
yi1(n) = 1[n= 0],

for t= 2, · · · , T, and n=−(T − 1), · · · , T − 1.

To arrive at the LP formulation (11), we observe that the decision variables rit(n) and zt(n) enter

the objective and constraints of formulation (9) together as rit(n)zt(n), which basically represents

the joint probability that customer t faces net purchase position n and is recommended message

i ∈ {1,0,−1}. Therefore, substituting rit(n)zt(n) with yit(n) yields formulation (11). In particular,

the first constraint in formulation (11) corresponds to Equation (N), and the remaining four con-

straints correspond to (ICr
1)-(IC

r
−1). Thus, the optimal recommendation policy r? and the induced

customer’s belief about the net purchase position z? can be recovered from the optimal solution y?

of formulation (11) according to Equation (10). In particular, if it is impossible for customer t to

face net purchase position n (i.e., z?t (n) = 0), then any recommendation policy satisfying Equation

(R) is optimal. As a result, Proposition 5 helps further reduce the number of decision variables

to 3T × (2T − 1) in formulation (11), as opposed to having 4T × (2T − 1) decision variables in

formulation (9). More importantly, the problem formulation (11) can be efficiently solved by using

existing LP algorithms.
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Figure 4 Illustration of platform’s optimal recommendation policy r? as heat maps (for

T = 100, q= .7, p= .7, v0 = .55 hence with v∗ = .5, v∗∗ = .8448 and v0 ∈ [v∗, v∗∗)). The area shaded in gray

corresponds to z?t (n) = 0, and the non-shaded area corresponds to z?t (n)> 0. For each subfigure, the gradient of

the color at location (t, n) represents the magnitude of the corresponding ri?t (n)∈ [0,1].

We illustrate the platform’s optimal recommendation policy r? for a specific example with param-

eters given in Figure 4. Take customer t= 40 for instance. The net purchase position is bounded

between −39 and 39 according to Equation (7). If the net purchase position turns out to be n=−20,

then the optimal policy provides to that customer the positive recommendation with probability

r1?40(−20) = .26, the neutral recommendation with probability r0?40(−20) = .36, and the negative rec-

ommendation with probability r−1?40 (−20) = .38. Figure 4 represents the magnitude of the three

probabilities ri?t (n)∈ [0,1] (for i∈ {1,0,−1}) as the color gradient of three heat maps, with darker

color corresponding to higher probabilities, for each customer t (the horizontal coordinate) and

for each possible net purchase position n faced by that customer (the vertical coordinate). The

triangular area shaded in gray corresponds to the net purchase positions that are not reachable

by the platform (i.e., z?t (n) = 0). As shown by Figure 4, the platform’s optimal policy involves

significant level of randomization among the three recommendations {1,0,−1} at majority of the
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net purchase positions for each customer. As such, the platform’s optimal policy does not per-

mit a simple analytical characterization and hence can be challenging to prescribe, interpret, and

implement in practice.

Nonetheless, the optimal policy demonstrated in Figure 4 appears to rely more on neutral rec-

ommendations for earlier customers (as shown by the darker color at majority of the reachable net

purchase positions for smaller t in Figure 4(b)). For later customers, on the other hand, the optimal

policy appears to rely more on affirmative recommendations with positive recommendations pro-

vided at higher net purchase positions (as shown by the darker color at majority of the reachable

net purchase positions with higher n for larger t in Figure 4(a)) and negative recommendations

at lower net purchase positions (as shown by the darker color at majority of the reachable net

purchase positions with lower n for larger t in Figure 4(c)).

Motivated by the observations above, we ask the question: Is it possible to identify a heuristic

policy that involves minimal level of randomization for the ease of implementation while still

capturing the global pattern of the optimal policy to ensure close-to-optimal revenue performance?

Next section answers this question.

5. NA-Partition Policy

In this section, we propose and study a class of recommendation policies, which we refer to as

NA-partition policies. This policy partitions customers according to their order of arrival into two

groups: neutral customers and affirmative customers, hence the name NA-partition. Each neu-

tral customer is provided with only the neutral recommendation regardless of the platform’s net

purchase position, whereas each affirmative customer is provided with only an affirmative recom-

mendation, which can be randomized between the positive or negative recommendation depending

on the platform’s net purchase position. Following the notation in Equation (R), an NA-partition

policy r sets either r0t (n) ≡ 1 for all n (i.e., customer t is partitioned as a neutral customer) or

r1t (n) + r−1t (n) = 1− r0t (n)≡ 1 for all n (i.e., customer t is partitioned as an affirmative customer),

where r1t (n) and r−1t (n), the probabilities for an affirmative customer t to receive a positive and

negative recommendation, respectively, can still depend on n. That is, r0t (·) takes values 1 or 0,

and is only a function of a customer’s order of arrival t but not of the net purchase position

n. For this reason, we denote r0t (·) as r0t for an NA-partition policy r. Clearly, the class of NA-

partition policies is a subset of the general recommendation policies, which allow the platform

to fully randomize among all three types of recommendation at any net purchase position (i.e.,

r1t (n) + r0t (n) + r−1t (n)≡ 1 for all n).

The goal of the remaining section is to identify the optimal policy within the class of NA-partition

policies. We recall that the main analytical complication of the platform’s problem formulation (9)
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stems from the interaction between the belief evolution in Equation (N) and the IC constraints

(ICr
1)-(IC

r
−1) imposed for each customer. Since Equation (N) depends on a recommendation policy

only through r0t (n) (because r1t (n) + r−1t (n) = 1− r0t (n)), an NA-partition policy in effect breaks

such interaction by making r0t (n) independent of n. As a result, under an NA-partition policy,

we can derive the customer’s belief about the net purchase position in closed form, as shown

by Proposition 6 below; and hence, the revenue maximization problems for individual customers

become separable, as characterized by Propositions 7 and 8. This separation reduces the platform’s

problem of optimizing the NA-partition policy to one that simply optimizes when and how many

neutral and affirmative customers to partition, as characterized in Proposition 9.13

As outlined above, our first step of analysis is to characterize the customer’s belief about the

net purchase position, zt(·), by specializing the recommendation policy r in Equation (N) to an

NA-partition policy.

Proposition 6 (Customer’s belief of net purchase position under NA-partition policy).

Under an NA-partition policy r, customer t believes that the net purchase position is N(Ht) = n

with probability zt(n) = ζ(`rt , n), where `rt :=
∑

s<t r
0
s is the total number of neutral customers the

platform has partitioned before customer t and

ζ(s,n) =

(
s
s+n
2

)[
v0q

s+n
2 (1− q) s−n2 + (1− v0)(1− q)

s+n
2 q

s−n
2

]
1 [|n| ≤ s and n≡ s (mod2)] . (12)

Proposition 6 shows that each customer’s belief about the net purchase position depends on the

platform’s NA-partition policy r only through a single parameter `rt , the total number of neutral

customers partitioned before customer t. By definition, the net purchase position n customer t

is facing is the difference between the number of purchases and non-purchases made by neutral

customers arriving before her. Thus, the total numbers of purchases and non-purchases before

customer t are `rt+n

2
and `rt−n

2
, respectively. Conditional on the product value V = 1 (resp., V = 0), a

neutral customer makes the purchase if she receives an optimistic signal St = 1, which occurs with

probability q (resp., 1− q). Subsequently, the number of purchases made by `rt neutral customers

follows a mixture of two binomial distributions Bin(`rt , q) and Bin(`rt ,1 − q) with weights v0 =

P[V = 1] and 1−v0 = P[V = 0], respectively, resulting in Equation (12). As more neutral customers

are partitioned (i.e., larger `rt ), both binomial distributions becomes more dispersed, so does the

customers’ belief about the net purchase position (see Figure D.1 in Appendix D for an illustration).

Given a customer’s belief in Proposition 6, we can examine the incentive compatibility and

the platform’s corresponding revenue of partitioning the customer as a neutral customer or as an

affirmative customer separately. We first study the case of a neutral customer.

13 In this section, we again focus on the parametric range such that v0 ∈ [v∗, v∗∗) to rule out the trivial cases. For
v0 ≥ v∗∗ (resp., v0 < v∗), the optimal policy characterized in Corollary 1 can be trivially implemented through the
NA-partition policy that provides the positive (resp., negative) recommendation to all customers, i.e., r1?t (n) ≡ 1
(resp., r−1?

t (n)≡ 1) for all t and n.
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Proposition 7 (Neutral customer). It is incentive compatible to partition any customer as

a neutral customer, from whom the platform earns an expected revenue of pu0.

If the platform partitions a customer as a neutral customer (i.e., pools all net purchase positions

uniquely to the neutral recommendation), that customer cannot make any additional inference

about the platform’s net purchase position and hence nor about the product value V beyond the

prior expectation, i.e., E [E [V |N(Ht)]] = v0. Since v0 ∈ [v∗, v∗∗), (ICr
0) is satisfied. Based on the

prior expectation v0, a neutral customer purchases the product with probability u0 = qv0 + (1−
q)(1− v0), which thus generates an expected revenue of pu0 for the platform. Notably, while it is

always incentive compatible to partition all customers as neutral customers (and hence generate

a revenue of pu0T ), it may not be optimal to do so as the platform can potentially increase the

revenue by partitioning some customers as affirmative customers.

We now turn to the case of an affirmative customer, for whom the platform can randomize

between the positive and negative recommendations mt ∈ {1,−1}. In this case, the platform cannot

simply pool all net purchase positions to a positive or negative recommendation as that would

induce the customer to form expectation v0 ∈ [v∗, v∗∗) about the product value V, violating the

relevant IC constraints (ICr
1) and (ICr

−1). Rather, the platform needs to pool sufficiently high (resp.,

low) net purchase positions into the positive (resp., negative) recommendation so as to induce a

posterior expectation above v∗∗ (resp., below v∗). This prompts us to consider an NA-partition

policy that makes the positive (resp., negative) recommendation for all the net purchase positions

above (resp., below) a certain threshold n. We refer to such policy as threshold affirmative policy

(n,x) and formally define it as

r1t (m) =

 1, for m>n,
x, for m= n,
0, for n<n,

and r−1t (m) = 1− r1t (m), (13)

where x ∈ [0,1] (resp., 1− x) represents the probability of providing the positive (resp., negative)

recommendation at position n. In fact, we show that it suffices to consider threshold affirmative

policies for an affirmative customer (see Lemma C.2 in Appendix C).

Under threshold affirmative policy (n,x) specified in Equation (13) and the customer’s belief

characterized in Proposition 6, IC constraints (ICr
1) and (ICr

−1) can be rewritten as

(vn− v∗∗) ζ(`rt , n)x+
∑
m>n

(vm− v∗∗)ζ(`rt ,m)≥ 0, and

(vn− v∗) ζ(`rt , n)(1−x) +
∑
m<n

(vm− v∗)ζ(`rt ,m)≤ 0, respetively.
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In particular, threshold affirmative policies (n∗∗(`rt ), x
∗∗(`rt )) and (n∗(`rt ), x

∗(`rt )) bind (ICr
1) and

(ICr
−1), respectively, where

(n∗∗(s), x∗∗(s)) := arg min
n≥−s, x∈[0,1]

{
n : (vn− v∗∗) ζ(s,n)x+

∑
m>n

(vm− v∗∗)ζ(s,m) = 0

}
, and (14)

(n∗(s), x∗(s)) := arg max
n≤s, x∈[0,1]

{
n : (vn− v∗) ζ(s,n)(1−x) +

∑
m<n

(vm− v∗)ζ(s,m) = 0

}
. (15)

Here, multiple threshold affirmative policies may bind (ICr
1) and (ICr

−1). For instance, the threshold

affirmative policy (n,1) represents the same policy as the threshold affirmative policy (n− 1,0)

according to Equation (13). As a convention, we set the threshold affirmative policy (n∗∗(s), x∗∗(s))

as the one with the lowest threshold and (n∗(s), x∗(s)) as the one with the highest threshold.

Indeed, as shown by the following proposition, the threshold affirmative policies given by Equations

(14) and (15) are well-defined, unique,14 and play a critical role in determining the incentive

compatibility and the optimal expected revenue of partitioning an affirmative customer.

Proposition 8 (Affirmative customer). Under an NA-partition policy r, it is incentive

compatible to partition customer t as an affirmative customer if and only if `rt ≥ τ ◦ :=

min{s≥ 0 : n∗(s)>n∗∗(s), or n∗(s) = n∗∗(s) with x∗∗(s)≥ x∗(s)} . If customer t is partitioned as

an affirmative customer, the threshold affirmative policy (n∗∗(`rt ), x
∗∗(`rt )) is optimal and generates

an expected revenue of pF (`rt ) for the platform, where

F (s) := x∗∗(s)ζ(s,n∗∗ (s)) +
∑

n>n∗∗(s)

ζ(s,n), (16)

is a non-decreasing function in s.

We note that partitioning the first customer as an affirmative customer may violate (ICr
1) and

(ICr
−1), because the first customer’s expectation of the product value V is given by the prior

expectation v0 ∈ [v∗, v∗∗). Thus, the platform may need to accrue sufficient evidence about the

product value by partitioning enough neutral customers before it can persuade upcoming customers

into sure purchase or sure no-purchase through affirmative recommendations. Indeed, the first part

of Proposition 8 shows that it is incentive compatible for the platform to do so, if and only if the

total number of neutral customers partitioned thus far, `rt , is sufficiently large so that n∗(`rt ) ≥
n∗∗(`rt ) with the additional requirement x∗(`rt )≤ x∗∗(`rt ) when the equality holds. This condition

essentially ensures that threshold affirmative policy (n∗∗(`rt ), x
∗∗(`rt )) satisfies (ICr

−1). To see this,

we note that to relax the binding (ICr
−1), one needs to use a threshold affirmative policy (n,x) with

14 For s= 0 and v0 = v∗, Equation (14) still generates a unique solution with n∗∗(0) = 0 and x∗∗ = 0, whereas Equation
(15) generates a unique n∗(0) = 0 but has multiple values of x∗(0) as the solution, in which case we choose x∗(0) = 0.
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the threshold n lower than n∗(`rt ) or a probability of making positive recommendation x higher than

x∗(`rt ) (equivalently, a probability of making negative recommendation 1−x lower than 1−x∗(`rt ))
if the threshold n= n∗(`rt ). Similarly, threshold affirmative policy (n∗(`rt ), x

∗(`rt )) satisfies (ICr
1). In

fact, we find the minimum number of neutral customers required (i.e., τ ◦) to be no larger than

three. Hence, only a small number of neutral customers are needed before partitioning affirmative

customers.

Furthermore, Proposition 8 demonstrates that the optimal way to provide affirmative recommen-

dations to an affirmative customer is given by the threshold affirmative policy (n∗∗(`rt ), x
∗∗(`rt )).

This is because this policy binds (ICr
1) and hence maximizes the probability for that affirmative

customer to receive the positive recommendation (and subsequently make the purchase). This

argument establishes myopic optimality of this policy, i.e., the expected revenue earned from that

particular affirmative customer is optimized. Nevertheless, how the platform provides affirmative

recommendations to an affirmative customer does not affect the distribution of the net purchase

position (see Proposition 6) and hence has no effect on the platform’s revenue maximization from

any other affirmative customers. (According to Proposition 7, the expected revenue earned from

any neutral customer is fixed and hence is not affected either.) Therefore, this policy is also globally

optimal when the platform aims to optimize the entire NA-partition policy for the entire campaign.

Most significantly, Proposition 8 shows that (i) once it becomes incentive compatible to partition

an affirmative customer, it remains incentive compatible to do so for the rest of the campaign;

and that (ii) more neutral customers partitioned prior to an affirmative customer increase the

platform’s optimal expected revenue earned from that affirmative customer. Intuitively, as more

neutral customers are partitioned, the platform collects more information about the product’s

value, which only strengthens its capability of making more credible affirmative recommendations,

i.e., the IC constraints become easier to satisfy. Mathematically, larger `rt disperses the customers’

belief about the platform’s net purchase position; it can be shown that an incentive compatible

affirmative recommendation policy for a customer facing less dispersed distribution of the net

purchase position can always be “replicated” (i.e., generate the same inference about product

value V and the same expected revenue) for a customer facing more dispersed distribution of the

net purchase position. As such, partitioning more neutral customers early in the campaign helps

improve the platform’s expected revenue extracted from a subsequent affirmative customer.

The above monotonicity property of the revenue extracted from an affirmative customer implies

that the platform will be better off by partitioning the customers arriving earlier in the campaign

as neutral customers and relegating all affirmative customers afterwards, resulting in the following

characterization of the overall optimal NA-partition policy.
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Proposition 9 (Optimal NA-partition policy). Suppose T ≥ τ ◦ − 1.15 Then the optimal

NA-partition policy partitions the first t? customers as neutral customers (i.e., r0?t (n)≡ 1 for all

n and t ≤ t?) and partitions all remaining customers as affirmative customers, where t? is the

solution to

πNA := p max
t∈[τ◦−1,T ]

u0t+F (t)(T − t). (17)

The optimal NA-partition policy uses the same threshold affirmative policy (n∗∗ (t?) , x∗∗(t?)) for all

T − t? affirmative customers. Under the optimal NA-partition policy, the platform’s total expected

revenue is πNA.

The optimal NA-partition policy characterized by Proposition 9 is simple to implement and

entails minimal randomization: the platform partitions all customers arriving up to a cut-off cus-

tomer t? as neutral customers irrespective of the net purchase positions they are facing (i.e., front-

loads the neutral recommendation), and partitions all customers arriving afterwards as affirmative

customers (i.e., front-loads the affirmative recommendation). For all the affirmative customers, the

platform applies the same threshold affirmative policy (n∗∗ (t?) , x∗∗(t?)), which is the one optimized

myopically for the (t? + 1)st affirmative customer. Therefore, the optimal NA-partition policy can

be fully prescribed by only three parameters t?, n∗∗ (t?) and x∗∗(t?). This is a significant reduc-

tion in the computational complexity compared to the LP formulation of the platform’s original

problem obtained in Proposition 5, which is in the magnitude of 3T × (2T − 1).

t
t? T

0

1

F (t)

u0

neutral affirmative

(a) F (t).

t
t?

πNA

T
0

p{u0t+F (t)(T − t)}

neutral affirmative

(b) p{u0t+F (t)(T − t)}.

Figure 5 Determination of the optimal number of neutral customers t? (for T = 100, q= .7, p= .7, v0 = .55

hence with v∗ = .5, v∗∗ = .8448 and v0 ∈ [v∗, v∗∗)).

Front-loading more neutral customers increases the platform’s expected revenue earned from

each affirmative customer (by Proposition 8), but reduces the number of affirmative customers that

15 If T < τ◦−1, the only incentive compatible NA-partition policy is to partition all T customers as neutral customers.
However, as discussed earlier, τ◦ is below three, whereas T is typically much larger in practice. Thus, this case is less
relevant.
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the platform can back-load due to the limited campaign length. The optimal number of neutral

customers t? characterized by Equation (17) strikes the platform’s trade-off between these two

effects, as illustrated by Figure 5(b). In fact, as shown in Figure 5(a), the platform should keep

partitioning customer t as a neutral customer till F (t)>u0, only after which the optimal expected

revenue earned from an affirmative customer becomes higher than that from a neutral customer.

Implementation of optimal NA-partition policy (Best-seller mechanism): There are

many approaches to implement the optimal NA-partition policy in practice. One easy implemen-

tation is what we refer to as the best-seller mechanism, and it works as follows:

To the first t? customers, the platform keeps silent or provides less informative messages. For

the remaining T − t? customers, the platform only promotes the product (“best-seller”) if the

cumulative purchases made by the first t? customers exceed n∗∗ (t?)/2; otherwise, keeps doing the

same as for the first t? customers for the remaining T − t? customers of the campaign.

In the best-seller mechanism, we leverage the customers’ order of arrival to differentiate the

meaning of messages before and after the cut-off customer t?: the silence or messages before the cut-

off t? should be interpreted as the neutral recommendation as it applies regardless of the platform’s

net purchase position, whereas those after the cut-off t? should be interpreted as the negative

recommendation as it applies only when the cumulative purchases made by the first t? customers

fail to exceed n∗∗ (t?)/2. In fact, the best-seller mechanism resembles the strategy adopted by

Groupon’s “Deals of the Day” described in the Introduction (see Figure 1). To illustrate, Figure

D.5 in Appendix D records the information provided over the course of the selling campaigns for

15 products on Groupon’s “Deals of the Day.”

6. Performance of NA-Partition Policy and Value of Information
Design

In this section, we conduct a comprehensive numerical study to (i) evaluate the revenue performance

of the optimal NA-partition policy, (ii) quantify its value against näıve policies commonly used in

practice, and (iii) examine how key campaign parameters affect the optimal NA-partition policy.

Our analysis leverages and complements the theoretical development of the last two sections. We

also provide insights into how an online platform can effectively manage its information flow.

6.1. Performance of optimal NA-partition policy

In Proposition 5, we have shown the platform’s optimal recommendation policy and expected

revenue (π?) can be efficiently identified through a linear program. However, such an optimal

policy may be difficult to implement in practice. As shown by Proposition 9, this challenge can

be overcome by the optimal NA-partition policy. We now demonstrate that the revenue under the

optimal NA-partition policy (πNA) is close to the optimal revenue π?. Specifically, fixing a campaign
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length T ∈ {50,100,500}, we compute the optimality gap between the optimal NA-partition policy

and the optimal policy, measured by the ratio (π? − πNA)/π?, by varying the price p from 0.1 to

0.9, the prior expectation v0 from 0.05 to 0.95, and the precision of the customer’s private signal

q from 0.55 to 0.95, all with 0.1 increment (see Tables D.1 and D.2 in Appendix D for details).

Thus, the total number of instances for each given T is 9×10×5 = 450, out of which 182 instances

satisfy v0 ∈ [v∗, v∗∗).16 As shown by Table 1, the optimal NA-partition policy is able to garner on

average 95% of the optimal revenue and more than 90% of the optimal revenue for the majority of

instances. In the worst case, at least 75% of the optimal revenue can be captured by the optimal

NA-partition policy.

Table 1 Summary statistics of the optimality gap between optimal NA-partition policy and optimal

recommendation policy (π?−πNA)/π? across 182 instances of (p, q, v0) such that v0 ∈ [v∗, v∗∗) for

T ∈ {50,100,500}.

T = 50 T = 100 T = 500

Average 5.12% 4.66% 4.11%

Standard deviation 4.45% 4.51% 4.67%

Minimum 0 0 0

Maximum 24.49% 24.85% 25.13%

≥ 10% 25 22 21

Number of instances with gap ≥ 15% 9 8 8

≥ 20% 3 3 2

6.2. Value of information design

Two näıve information policies widely used in practice are the no-disclosure (as in the case of

Amazon) and full-disclosure (as in the case of Woot) policies. They represent two extreme modes

of information provision. Here we quantify how much additional revenue the platform earns under

the optimal NA-partition policy identified in Proposition 9. To do so, we first characterize the

platform’s revenue under the two benchmark policies.

Under the no-disclosure policy, the platform withholds any information about its proprietary

history from upcoming customers, who thus make their purchase decisions purely based on the

prior expectation v0 ∈ [v∗, v∗∗). By Proposition 1, therefore, all customers simply follow their private

signals to make their purchase decisions, resulting in an expected revenue equal to that under an

NA-partition policy that partitions all customers as a neutral customer (see Proposition 7). Thus,

the platform’s expected revenue under the no-disclosure policy is πND := pu0T .

16 For parameters such that v0 6∈ [v∗, v∗∗), there is no optimality gap, i.e., πNA = π?.
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In contrast, the full-disclosure policy equalizes the information between the platform and cus-

tomers, a setting explored by Bikhchandani et al. (1992). In this case, each customer observes the

platform’s net purchase position and bases her purchase decision on the belief identified in Propo-

sition 3. Once a customer’s posterior expectation exceeds v∗∗ (resp., falls below v∗), positive (resp.,

negative) information cascade occurs: all the subsequent customers will make the purchase (resp.,

not make the purchase) irrespective of their private signals, and hence their purchase decisions will

generate no new information about the product value. Prior to the information cascade, customers

make their purchase decision according to their private signals. Proposition C.1 in Appendix C

fully characterizes the platform’s expected revenue πFD under the full-disclosure policy. Notably

πFD, as a function of two main product characteristics, prior expectation v0 and price p, is dis-

continuous at v0 = p, as the occurrence of information cascade follows different patterns for v0 ≥ p
versus for v0 < p.

17 The former (resp., latter) case represents a product with a promising prospect

and a reasonable price (resp., a less promising and pricier product) that a customer would purchase

(resp., not purchase) purely based on the publicly available information about the product without

referring to her private signal nor the platform’s message.
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Figure 6 Relative revenue performance of optimal NA-partition policy πNA against no-disclosure policy πND and

full-disclosure policy πFD (for q= .7 and T = 100), plotted for the range of v0 ∈ [v∗, v∗∗).

17 As shown by (C.33) and (C.34) in Appendix C, for v0 ≥ p, the positive (resp., negative) cascade can occur after odd
(resp., even) number of customers starting from the second (resp., third) customer, whereas for v0 < p the positive
(resp., negative) cascade can occur after even (resp., odd) number of customers starting from the third (resp., second)
customer.
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To demonstrate the value of information design, we now benchmark the revenue under the opti-

mal NA-partition policy, πNA, characterized in Proposition 9 against those of the no-disclosure and

full-disclosure policies.18 The measurements we adopt are the percentage increase of πNA relative

to the revenue under the benchmark policies, namely (πNA− πND)/πND and (πNA− πFD)/πFD. In

Figure 6, we compute and plot these two ratios by varying the price p and the prior expectation

v0 respectively while fixing all the other parameters.

As can be seen from Figure 6, the optimal NA-partition policy always outperforms the two näıve

policies and can increase the revenue under those two policies significantly (from 20% to 80% for

most of the parametric instances). Specifically, relative to no disclosure, the optimal NA-partition

policy manifests its value in information provision and this value becomes higher for products with

lower prices or more promising prospects (i.e., (πNA− πND)/πND is decreasing in p and increasing

in v0, as shown by Figures 6(a) and 6(b), respectively). Relative to full disclosure, the optimal NA-

partition policy manifests its value in information obfuscation and this value ((πNA − πFD)/πFD)

demonstrates a discontinuity in the product’s price p or prior prospect v0 at p = v0, as can be

seen from Figures 6(a) and 6(b), respectively. Such a discontinuity emerges from the discontinuity

of πFD as pointed out above. Thus, Figure 6 suggests that the optimal NA-partition policy can

bring a higher revenue improvement over the full-disclosure policy for p > v0 than for p≤ v0 (i.e.,

(πNA−πFD)/πFD is higher for p > v0 than for p≤ v0).
Furthermore, by comparing the two benchmark policies, Figure 6 reveals that the full-disclosure

policy generates a higher revenue than the no-disclosure policy for p ≤ v0, as the optimal NA-

partition policy yields a lower revenue improvement over the full-disclosure policy than over the

no-disclosure policy (i.e., (πNA− πND)/πND > (πNA− πFD)/πFD implies that πFD > πND). It is the

other way around for p > v0. In other words, if we regard the set of all information provision policies

as a continuum spectrum ranging from the no-disclosure to full-disclosure policies, then the optimal

NA-partition policy seems to be closer to the full-disclosure policy (resp., the no-disclosure policy)

for products with more (resp., less) promising prospects and/or lower prices (resp., higher prices).

Indeed, as indicated by Figure 7, the number of neutral customers t? partitioned by the optimal

NA-partition policy is in general increasing in p and decreasing in v0:
19 by partitioning a larger

number of neutral customers, the platform discloses less of its proprietary information and hence

makes the NA-partition policy closer to the no-disclosure policy. In essence, the optimal NA-

partition policy acts to optimize the occurrence of information cascade to t? (rather than the first

18 As already shown in section 6.1, πNA is close to π?. Thus, similar findings can be obtained if we benchmark the
optimal revenue π? against the revenue under the no-disclosure and full-disclosure policies; see Figure D.6 in Appendix

D for computations of π?−πND

πND and π?−πFD

πFD .

19 Local non-monotonicity in t? is mainly caused by the discreteness in t?.
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Figure 7 Optimal number of neutral customers t?, for T = 100 and q= .7.

time that the customer’s posterior expectation falls outside of [v∗, v∗∗) under the full-disclosure

policy) and maximizes the probability of a positive information cascade to F (t?).

The practical implication of our observations above is evident. For products with less promis-

ing prospect (e.g., with mediocre existing ratings) or pricier products, platforms should withhold

the sales history for a longer time and accrue more convincing evidence (by letting consumers

make their purchase decisions based on their own private assessment) before making an affirma-

tive recommendation. However, platforms do not need to wait too long to provide affirmative

recommendations for highly rated or heavily discounted products.

6.3. Characteristics of optimal NA-partition policy

Finally, we examine the parametric dependence of the optimal NA-partition policy on the campaign

length T and the product price p. Since these two parameters can potentially be adjusted by the

platform and the third-party vendor, respectively, their effects are of particular interest.

Effects of campaign length T. Given price p and prior expectation v0, Figure 8(a) shows that

a longer campaign (i.e., larger T ) calls for partitioning a larger number of neutral customers (i.e.,

larger t?). As shown by Figure 8(b), the platform in turn provides the positive recommendation

(and hence induce purchases) with higher probability to the subsequent affirmative customers

(i.e., larger F (t?)). Intuitively, a longer campaign allows the platform to partition more neutral

customers and hence to raise its revenue extracted from each affirmative customer (see Proposition

8), while still having a sufficient number of affirmative customers for revenue extraction.

Perhaps surprisingly, Figure 8(a) indicates that the optimal NA-partition policy only partitions

less than 20% of the customers as neutral customers (i.e., t?/T ≤ 20%). As indicated by Figure

8(b), such a small number of neutral customers can go a long way by significantly boosting F (t?)
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Figure 8 Effects of campaign length T on optimal NA-partition policy (for q= .7).

and hence the revenue extracted from affirmative customers.20 In fact, we recall from Figure 5(a)

that F (t) is increasing in t at a diminishing rate: it rises steeply for the first few neutral customers

and then flattens out subsequently.

Effects of price p. Given all other campaign characteristics (T, q, v0), we now examine how

the product price p affects the platform’s expected revenue under the optimal NA-partition policy.

This question is of particular interest, because the third-party vendor or sometimes the platform

can adjust the price p to maximize their revenues, which are proportional to each other.

We recall that price p determines the threshold value v∗ and v∗∗ through (5). Interestingly, Figure

9 indicates that the revenue-maximizing price should be set at either (i) the lower price limit that

equates v∗∗ to v0 as illustrated by the instance of (v0, q) = (.65, .55) or (ii) the upper price limit that

equates v∗ to v0 as illustrated by the instances of (v0, q) = (.45, .85) and (v0, q) = (.55, .7). In the

former case (i.e., v0 = v∗∗), all customers make the sure purchase regardless of their private signals,

eliminating the need for any information design/provision (see Corollary 1). In contrast, the need

for information design is significant in the latter case (i.e., v0 = v∗): as suggested by Figure 7(a),

the corresponding optimal NA-partition policy is nontrivial and calls for the largest number of

20 When q= .7, the purchase probability of a neutral customer (i.e., based on prior expectation v0) is u0 = 0.4,0.52 and
0.64 for v0 = 0.25,0.55 and 0.85, respectively. As shown by Figure 8(b), the purchase probability (i.e., the probability
of making positive recommendation) of an affirmative customer increases to F (t?)≈ 0.5,0.7, and 0.95 for these three
values of v0, corresponding to an increase over u0 by F (t?)/u0− 1≈25%, 35% and 48%, respectively.
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neutral customers (relative to under a non-optimized price).21 Our numerical experiment suggests

that the former case only occurs for a narrow range of parameters, whereas the latter case is much

more prevalent for a wide range of parameters.
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Figure 9 Effects of price p on optimal expected revenue πNA of NA-partition policy (for T = 100), plotted for

the range of p such that v0 ∈ [v∗, v∗∗) with the lower price limit corresponding to v0 = v∗∗ and the upper price

limit corresponding to v0 = v∗.

7. Conclusion

In this paper, we study the optimal information design for an online platform who aims to maximize

its revenue from a time-locked sales campaign. Customers sequentially visit the campaign and

they are heterogeneous in that each customer has access to a private signal about the product

value. Both the platform and customers are a priori uncertain about the value of the product,

but the platform gains informational advantage over customers as the campaign progresses: the

platform observes each customer’s purchase decision, which is unobservable to other customers.

To influence an upcoming customer’s inference about the product’s value and subsequently her

purchase decision, the platform designs its information policy that maps its proprietary up-to-date

sales history to a message provided to an upcoming customer.

As a methodological contribution to the emerging dynamic information design literature, we

obtain an LP formulation of the platform’s problem by reducing the space of information policies

to the class of recommendation policies that only necessitate three messages (i.e., positive, neutral,

and negative recommendations) and by simplifying the representation of the platform’s proprietary

history through the notion of net purchase position. This formulation enables us to efficiently solve

21 Such a dichotomy in the information provision policy induced by the optimized price is reminiscent of the similar
observation in the earlier stream of research on information provision initiated by Lewis and Sappington (1994).
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and compute the platform’s optimal information policy, and use it to evaluate other heuristic

policies.

As a contribution to the revenue management practice, we identify a practically implementable

and near-optimal information policy by optimizing over a subclass of recommendation policies,

which we refer to as the NA-partition policies. We fully characterize the optimal NA-partition

policy, which features minimal randomization of messages, follows a simple structure, and hence

is easy to prescribe and interpret. Specifically, the optimal NA-partition policy front-loads the

neutral recommendations up to a pre-specified cut-off customer and then back-loads the affirmative

recommendations by only promoting the products that are sold sufficiently well before the cut-

off customer. We demonstrate numerically that the optimal NA-partition policy can significantly

outperform näıve policies commonly used in practice (e.g., the no-disclosure and full-disclosure

policies) and delivers a near-optimal revenue.

Finally, our findings provide prescriptive guidelines for online platforms to manage their informa-

tion communication with customers. Platforms will be significantly better off by switching to the

optimal NA-partition policy from the no-disclosure policy for highly rated or heavily discounted

products, and from the full-disclosure policy for products with mediocre existing ratings or higher

prices. In particular, the optimal NA-partition policy should place the cut-off customer relatively

later in the campaign for the latter product category than for the former product category. In

general, the optimal NA-partition policy requires only a small fraction of customers (who arrive

during the initial segment of the selling horizon) to receive the neutral recommendation.

The general insights and methodology we uncover in this paper are applicable to a wide range

of settings (besides time locked sales campaings), whereby social learning is prevalent and can be

moderated by an information designer. Examples include social media management (e.g., Face-

book, Twitter), crowd-funding web sites (e.g., Indiegogo, Kickstarter), online streaming services

(e.g., YouTube, Netflix). Admittedly, our current model has to be modified to account for institu-

tional features specific to these settings. For instance, users on social media may not have equal

influence power as they differ in how well they are connected with others; on crowd-funding web

sites, project owners can often set and change the reward and its price; customers subscribing an

online streaming service may not be short-lived but rather interact with the platforms in a longer

term. Examining how such features will affect the platform’s information policy (and vice versa)

constitutes interesting and potentially fruitful directions for future research.
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Appendix A: Notation

Notation Definition

T campaign length

V product value

p product price

v0 prior expectation about product value V

St customer t′s private signal

q precision of customers’ private signals

at customer t′s purchase decision

mt message provided by the platform, to customer t

M set of all possible messages

Ht platform’s proprietary history up to customer t

H set of all possible proprietary histories

(σ,M) information provision policy

N(Ht) net purchase position, for a given proprietary history Ht

vn platform’s expectation of the product value V, for a given net purchase position n

r recommendation policy

rit(n) probability that the platform offers recommendation i to customer t, for a given
net purchase position n

zt(·) belief of a customer, about the net purchase position

yi?t (·) probability that the platform offers recommendation i to customer t

`rt total number of neutral customers platform has partitioned before customer t, for
a given recommendation policy r

ζ(t, ·) belief of a customer, arriving after t neutral customers, about the net purchase
position under a NA-partition policy

τ◦ minimum number of neutral customers necessary for the platform to be able to
partition affirmative customers

F (t) probability of sending a positive recommendation, after t neutral customers

n∗∗ optimal positive recommendation threshold

n∗ optimal negative recommendation threshold

π? optimal expected revenue for the platform

πNA expected revenue of the optimal NA-partition policy

πND expected revenue of the no-disclosure policy

πFD expected revenue of the full-disclosure policy

Appendix B: Proofs in Section 4

Proof of Proposition 1. Since private signals St are mutually independent conditional on V with

P [St = 1 | V = 1] = P [St =−1 | V = 0] = q, the Bayes rule thus immediately implies that

E [V | St = 1,mt, σ] = P [V = 1 | St = 1,mt, σ]

=
P [St = 1 | V = 1]P [V = 1 |mt, σ]

P [St = 1 | V = 1]P [V = 1 |mt, σ] +P [St = 1 | V = 0]P [V = 0 |mt, σ]

=
qP [V = 1 |mt, σ]

qP [V = 1 |mt, σ] + (1− q)P [V = 0 |mt, σ]
> P [V = 1 |mt, σ] = E [V |mt, σ]
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and similarly

E [V | St =−1,mt, σ] = P [V = 1 | St =−1,mt, σ]

=
(1− q)P [V = 1 |mt, σ]

(1− q)P [V = 1 |mt, σ] + qP [V = 0 |mt, σ]
< P [V = 1 |mt, σ] = E [V |mt, σ] ,

where the inequalities follow by 1/2< q≤ 1.

Thus, by (2), at = 1 upon St = −1 if and only if (1−q)P[V=1 |mt,σ]

(1−q)P[V=1 |mt,σ]+qP[V=0 |mt,σ]
≥ p, which reduces to

E [V |mt, σ] = P [V = 1 |mt, σ]≥ pq

pq+(1−p)(1−q) = v∗∗. Similarly, at = 1 upon St = 1 if and only if E [V |mt, σ] =

P [V = 1 |mt, σ]< p(1−q)
p(1−q)+(1−p)q = v∗. Since it is straightforward to verify (5), the above two conditions thus

lead to (4). �

Lemma B.1. For an arbitrary information provision policy
(
σ̃,M̃

)
, define a mapping ϕ : M̃ →M :=

{1,0,−1} as follows:

ϕ(m̃t) :=

 1, if E [V | m̃t, σ̃]≥ v∗∗,
0, if v∗ ≤E [V | m̃t, σ̃]< v∗∗,
−1, if E [V | m̃t, σ̃]≤ v∗.

(B.1)

For a platform’s proprietary history H̃t = {(m̃s, as) : s < t} under
(
σ̃,M̃

)
, denote ϕ(H̃t) := {(ϕ(m̃s), as) : s <

t} with slight abuse of notation. Then,

E
[
V
∣∣∣ H̃ ′t, σ̃]=E

[
V
∣∣∣ H̃ ′′t , σ̃] , if ϕ(H̃ ′t) =ϕ(H̃ ′′t ). (B.2)

Furthermore, platform’s expectation of the product value evolves as follows

E
[
V
∣∣∣ H̃t+1, σ̃

]
=


E
[
V
∣∣∣ H̃t, σ̃

]
, if ϕ(m̃t) =±1 and H̃t+1 = H̃t ∪ (m̃t,ϕ(m̃t)) ,

qP[V=1 | H̃t,σ̃]
qP[V=1 | H̃t,σ̃]+(1−q)P[V=0 | H̃t,σ̃]

, if ϕ(m̃t) = 0 and H̃t+1 = H̃t ∪ (m̃t,1) ,

(1−q)P[V=1 | H̃t,σ̃]
(1−q)P[V=1 | H̃t,σ̃]+qP[V=0 | H̃t,σ̃]

, if ϕ(m̃t) = 0 and H̃t+1 = H̃t ∪ (m̃t,−1) .

(B.3)

with E [V | σ̃] = P [V = 1 | σ̃] = v0.

Proof of Lemma B.1. By Proposition 1 and definition of ϕ in (B.1), customer t, who receives m̃t with

ϕ(m̃t) =±1, makes purchase decision ãt = ϕ(m̃t) =±1, regardless of St. Thus, platform does not infer any

new information in addition to the inference made from the previous customers purchase decisions and hence

its expectation of the product value does not alter, establishing the first line in (B.3). Again by Proposition 1

and (B.1), customer t, who receives m̃t where ϕ(m̃t) = 0, makes purchase decision ãt = St. Thus, the second

and third lines in (B.3) follow from the Bayes rule:

E
[
V
∣∣∣ H̃t ∪ (m̃t, ãt) ,ϕ(m̃t) = 0, σ̃

]
= P

[
V = 1

∣∣∣ H̃t ∪ (m̃t, ãt) ,ϕ(m̃t) = 0, σ̃
]

= P
[
V = 1

∣∣∣ H̃t, St = ãt, σ̃
]

=
P [St = ãt | V = 1]P

[
V = 1

∣∣∣ H̃t, σ̃
]

P [St = ãt | V = 1]P
[
V = 1

∣∣∣ H̃t, σ̃
]

+P [St = ãt | V = 0]P
[
V = 0

∣∣∣ H̃t, σ̃
] ,

where P [St = 1 | V = 1] = P [St =−1 | V = 0] = q by assumption.

We now demonstrate (B.2) by induction. For t = 1, since H̃1 = ∅ and E [V | σ̃] = v0, (B.2) holds. Now

suppose (B.2) holds for t. Let H̃ ′t+1, H̃
′′
t+1 be two platform’s proprietary histories such that ϕ(H̃ ′t+1) =

ϕ(H̃ ′′t+1), which implies that ϕ(H̃ ′t) =ϕ(H̃ ′′t ) and ϕ(m̃′t) =ϕ(m̃′′t ). Thus, the induction hypothesis immediately

implies that E
[
V
∣∣∣ H̃ ′t, σ̃]=E

[
V
∣∣∣ H̃ ′′t , σ̃] and, further by (B.3), we have (B.2) holds for t+ 1. �
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Proof of Corollary 1. We prove by induction the following property for v0 6∈ [v∗, v∗∗): under any arbitrary

information provision policy σ,

E [V |mt, σ] = E [V |Ht, σ] = v0, (B.4)

for any mt and Ht such that σ (mt |Ht)> 0 and P [Ht | σ]> 0, for all t∈ {1, · · · , T}.
For t= 1, by Bayes rule we have for any m1

E [V |m1, σ] = P [V = 1 |m1, σ] =

∑
H1
σ (m1 |H1)P [V = 1 |H1, σ]P [H1 | σ]∑

H1
σ (m1 |H1)P [H1 | σ]

=P [V = 1 |H1, σ] = E [V ] = v0,

where the third and fourth equalities follow from the fact that H1 = ∅. Hence, (B.4) holds for t = 1. Now

suppose (B.4) holds for an arbitrary t. Again by Bayes rule, we have for any mt+1

E [V |mt+1, σ] = P [V = 1 |mt+1, σ] =

∑
Ht+1

σ (mt+1 |Ht+1)P [V = 1 |Ht+1, σ]P [Ht+1 | σ]∑
Ht+1

σ (mt+1 |Ht+1)P [Ht+1 | σ]
(B.5)

Notice for each Ht+1 with P [Ht+1 | σ] > 0, by our induction hypothesis and Proposition 1, that we either

have Ht+1 =Ht ∪ (mt,1) or Ht+1 =Ht ∪ (mt,−1) conditional on whether v0 ≥ v∗∗ or v0 < v∗, respectively.

Consequently, again by our induction hypothesis and (B.3) of Lemma B.1

P [V = 1 |Ht+1, σ] = E [V |Ht+1, σ] = E [V |Ht, σ] = v0,

for all mt and Ht that satisfy σ (mt |Ht)> 0 and P [Ht | σ]> 0. Hence, (B.5) becomes E [V |mt+1, σ] = v0 for

all mt+1 with P [mt+1 | σ]> 0. Therefore, (B.4) also holds for t+ 1.

Utilizing (B.4) and Proposition 1 it is straightforward to see for all t ∈ {1, · · · , T}, P [at = 1 | σ] = 1 when

v0 ≥ v∗∗ and P [at = 1 | σ] = 0 when v0 < v
∗. This completes the proof. �

Proof of Proposition 2. For an arbitrary information provision policy
(
σ̃,M̃

)
, we now define a new

information provision policy (σ,M) as

σ (mt |Ht) :=

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=mt

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃] , (B.6)

for any mt ∈M and Ht = {(ms, as) :ms ∈M, as ∈ {−1,1}, s < t}.
We then show that the information provision policy (σ,M) defined above satisfies (ICσ

−1), (ICσ
0), and

(ICσ
1), and hence is a recommendation policy. By rule of total probability, we first have

P [mt | σ] =
∑
Ht

σ (mt |Ht)P [Ht | σ]

by (B.6) =
∑
Ht

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=mt

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃]

=
∑

H̃t,ϕ(m̃t)=mt

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]=
∑

ϕ(m̃t)=mt

P [m̃t | σ̃] , (B.7)
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and similarly,

P [mt, V = 1 | σ] =
∑
Ht

σ (mt |Ht)P [V = 1,Ht | σ]

=
∑
Ht

σ (mt |Ht)

 ∑
ϕ(H̃t)=Ht

P
[
V = 1

∣∣∣ H̃t, σ̃
]
P
[
H̃t

∣∣∣ σ̃]


by (B.6) =
∑
Ht

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=mt

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃]
 ∑
ϕ(H̃t)=Ht

P
[
V = 1

∣∣∣ H̃t, σ̃
]
P
[
H̃t

∣∣∣ σ̃]


=
∑
Ht

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=mt

P
[
V = 1

∣∣∣ H̃t, σ̃
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
=

∑
ϕ(m̃t)=mt

∑
H̃t

P
[
V = 1

∣∣∣ H̃t, σ̃
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃] ,
where the fourth equality, utilizing the fact that V ∈ {0,1} is a binary random variable, follows by (B.2).

Then, the Bayes rule yields

E [V |mt, σ] = P [V = 1 |mt, σ] =

∑
ϕ(m̃t)=mt

∑̃
Ht

P
[
V = 1

∣∣∣ H̃t, σ̃
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]∑
ϕ(m̃t)=mt

P [m̃t | σ̃]
. (B.8)

On the other hand, the Bayes rule also yields

E [V | m̃t, σ̃] = P [V = 1 | m̃t, σ̃] =

∑̃
Ht

P
[
V = 1

∣∣∣ H̃t, σ̃
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
P [m̃t | σ̃]

. (B.9)

For any m̃t such that ϕ(m̃t) = 0, (B.1) implies that v∗ ≤E [V | m̃t, σ̃]< v∗∗, which, by (B.9), is equivalent

to

v∗P [m̃t | σ̃]≤
∑
H̃t

P
[
V = 1

∣∣∣ H̃t, σ̃
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]< v∗∗P [m̃t | σ̃] .

Further by (B.8), we have E [V |mt = 0, σ] = P [V = 1 |mt = 0, σ]∈ [v∗, v∗∗), establishing (ICσ
0). By the same

token, we can also establish (ICσ
−1) and (ICσ

1).

Finally, we demonstrate that (σ,M) and
(
σ̃,M̃

)
induces the same (ex ante) probability of purchase

for each customer and generates the same expected revenue for the platform. By Proposition 1 and (B.1),

customer t’s purchase decision under
(
σ̃,M̃

)
is

ãt =ϕ(m̃t) + (1− |ϕ(m̃t)|)St. (B.10)

And customer t’s purchase decision under (σ,M) is

at =mt + (1− |mt|)St. (B.11)

Hence, by (3), the platform’s expected revenue under
(
σ̃,M̃

)
is given by pT

2
+ p

2

∑T

t=1E [ãt | σ̃], and the

platform’s expected revenue under (σ,M) is given by pT

2
+ p

2

∑T

t=1E [at | σ]. We now demonstrate these

revenues are equal by showing

E [ãt | σ̃] = E [at | σ] for all t. (B.12)
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On one hand, by (B.10)

E [ãt | σ̃] = E [ϕ(m̃t) + (1− |ϕ(m̃t)|)St | σ̃]

= 1
∑

ϕ(m̃t)=1

P [m̃t | σ̃] + (−1)
∑

ϕ(m̃t)=−1

P [m̃t | σ̃] +
∑

ϕ(m̃t)=0

E [St | m̃t, σ̃]P [m̃t | σ̃] . (B.13)

On the other hand, by (B.11)

E [at | σ] = E [mt + (1− |mt|)St | σ]

= 1P [mt = 1 | σ] + (−1)P [mt =−1 | σ] +E [St |mt = 0, σ]P [mt = 0 | σ] . (B.14)

By (B.7), the first two terms in (B.13) are equal to the first two terms in (B.14) respectively, i.e.,∑
ϕ(m̃t)=1 P [m̃t | σ̃] = P [mt = 1 | σ] and

∑
ϕ(m̃t)=−1 P [m̃t | σ̃] = P [mt =−1 | σ]. Below, we demonstrate the

last term in (B.13) is also equal to that in (B.14), thus completing the proof. To that end, denote ũH̃t
:=

qP
[
V = 1

∣∣∣ H̃t, σ̃
]

+ (1− q)P
[
V = 0

∣∣∣ H̃t, σ̃
]

and uHt
:= qP [V = 1 |Ht, σ] + (1− q)P [V = 0 |Ht, σ]. Then, the

last term in (B.13) can be written as

∑
ϕ(m̃t)=0

E [St | m̃t, σ̃]P [m̃t | σ̃] =
∑

ϕ(m̃t)=0

∑
H̃t

[
1ũH̃t

+ (−1)(1− ũH̃t
)
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
=

∑
ϕ(m̃t)=0

∑
H̃t

[
2ũH̃t

− 1
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃] .
Similarly, the last term in (B.14) can be rewritten as

E [St |mt = 0, σ]P [mt = 0 | σ] =
∑
Ht

[1uHt
+ (−1)(1−uHt

)]σ (mt = 0 |Ht)P [Ht | σ]

=
∑
Ht

[2uHt
− 1]σ (mt = 0 |Ht)P [Ht | σ]

=
∑
Ht

[2uHt
− 1]

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=0

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃] P [Ht | σ]

=
∑
Ht

[2uHt
− 1]

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=0

σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃]
∑

ϕ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃]

=
∑
Ht

∑
ϕ(H̃t)=Ht,ϕ(m̃t)=0

[2uHt
− 1] σ̃

(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
=

∑
ϕ(m̃t)=0

∑
H̃t

[
2ũH̃t

− 1
]
σ̃
(
m̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
=

∑
ϕ(m̃t)=0

E [St | m̃t, σ̃]P [m̃t | σ̃] ,

where the third equality follows from (B.6) and the conversion of uHt
to ũH̃t

in the sixth equality follows

from (B.2) and the fact that V ∈ {0,1} is a binary random variable. �
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Proof of Proposition 3. Under a recommendation policy σ, (B.3) implies that the platform’s expectation

of the product value evolves according to

E [V |Ht+1, σ] =


E [V |Ht, σ] , if Ht+1 =Ht ∪± (1,1) ,

qP[V=1 |Ht,σ]

qP[V=1 |Ht,σ]+(1−q)P[V=0 |Ht,σ]
, if Ht+1 =Ht ∪ (0,1) ,

(1−q)P[V=1 |Ht,σ]

(1−q)P[V=1 |Ht,σ]+qP[V=0 |Ht,σ]
, if Ht+1 =Ht ∪ (0,−1) ,

(B.15)

with E [V | σ] = P [V = 1 | σ] = v0. We now prove (6) by induction. For t= 1, since H1 = ∅ and hence N(H1) =

0, thus (6) follows as E [V | σ] = v0. Suppose (6) holds for any arbitrary t (i.e., induction hypothesis). Then,

under a recommendation policy σ, we have the following three cases for t+ 1:

• If Ht+1 =Ht ∪±(1,1), (B.15) implies that E [V |Ht+1, σ] = E [V |Ht, σ] and hence (6) holds for t+ 1 by

induction hypothesis and by noting that N(Ht+1) =N(Ht) according to (7).

• If Ht+1 =Ht ∪ (0,1), (B.15) and induction hypothesis implies that

E [V |Ht+1, σ] = P [V = 1 |Ht+1, σ] =
qv0

qv0 + (1− q)(1− v0)
(

1−q
q

)N(Ht)
=

v0

v0 + (1− v0)
(

1−q
q

)N(Ht)+1
,

where the second equality follows by noting that N(Ht+1) =N(Ht) + 1 according to (7), hence (6) holds for

t+ 1.

• If Ht+1 =Ht ∪ (0,−1), (B.15) and induction hypothesis implies that

E [V |Ht+1, σ] = P [V = 1 |Ht+1, σ] =
(1− q)v0

(1− q)v0 + q(1− v0)
(

1−q
q

)N(Ht)
=

v0

v0 + (1− v0)
(

1−q
q

)N(Ht)−1
,

where the second equality follows by noting that N(Ht+1) =N(Ht)− 1 according to (7), hence (6) holds for

t+ 1. �

Proof of Proposition 4. By the definition of recommendation policy σ, the platform’s proprietary history

evolves according to

P [Ht+1 |Ht,mt, σ] =


1, if mt =±1 and Ht+1 =Ht ∪ (mt,mt) ,

qP [V = 1 |Ht, σ] + (1− q)P [V = 0 |Ht, σ] , if mt = 0 and Ht+1 =Ht ∪ (0,1) ,

(1− q)P [V = 1 |Ht, σ] + qP [V = 0 |Ht, σ] , if mt = 0 and Ht+1 =Ht ∪ (0,−1) ,

which, by the characterization of E [V |Ht, σ] (equivalently, P [V = 1 |Ht, σ] as V ∈ {0,1} is a binary random

variable) in (6) and the definition of vn in (8), translates to

P [N(Ht+1) |N(Ht) = k,mt] =


1, if mt =±1 and N(Ht+1) = k,

qvk + (1− q)(1− vk) = uk, if mt = 0 and N(Ht+1) = k+ 1,

(1− q)vk + q(1− vk) = 1−uk, if mt = 0 and N(Ht+1) = k− 1,

(B.16)

for any k. Total probability rule implies that

P [N(Ht+1) = n | r] =

n+1∑
k=n−1

P [N(Ht+1) = n |N(Ht) = k, r]P [N(Ht) = k | r]

=

n+1∑
k=n−1

1∑
i=−1

P [N(Ht+1) = n |N(Ht) = k,mt = i]P [mt = i |N(Ht) = k, r]zt(k)

=

n+1∑
k=n−1

1∑
i=−1

P [N(Ht+1) = n |N(Ht) = k,mt = i] rit(k)zt(k),

which, by substituting P [N(Ht+1) = n |N(Ht) = k,mt = i] with (B.16), yields (N). �
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Proof of Proposition 5. On one hand, let z?t (n) and ri?t (n) for i ∈ {1,0,−1}, n=−T + 1, · · · , T − 1 and

t = 1, · · · , T be the optimal solution to (9). We verify below that yi?t (n) := z?t (n)ri?t (n) for i ∈ {1,0,−1},
n=−T +1, · · · , T −1 and t= 1, · · · , T is a feasible solution to (11). First, notice by (R) and (N) that, yi?t (n) =

z?t (n)ri?t (n) ≥ 0 for i ∈ {1,0,−1}, n = −T + 1, · · · , T − 1 and t = 1, · · · , T . Second, utilizing formulation

yi?t (n) = z?t (n)ri?t (n), we have∑
i∈{1,0,−1}

yi?t (n) =z?t (n)
[
r1?t (n) + r0?t (n) + r−1?t (n)

]︸ ︷︷ ︸
=1 by (R)

=
[
z?t (n)− z?t−1(n)

]
+
[
z?t−1(n)− z?t−2(n)

]
+ · · ·+ [z?2(n)− z?1(n)] + z?1(n)

by (N) =un−1

t−1∑
s=1

z?s (n− 1)r0?s (n− 1) + (1−un+1)

t−1∑
s=1

z?s (n+ 1)r0?s (n+ 1)−
t−1∑
s=1

z?s (n)r0?s (n) +1[n= 0]

=un−1

t−1∑
s=1

y0?s (n− 1) + (1−un+1)

t−1∑
s=1

y0?s (n+ 1)−
t−1∑
s=1

y0?s (n) +1[n= 0],

for all n=−T +1, · · · , T −1 and t= 1, · · · , T . Remaining set of constraints are also established from utilizing

the formulation yi?t (n) = z?t (n)ri?t (n) and (ICr
1)-(ICr

−1), such that

by (ICr
1) =

T−1∑
n=−T+1

(vn− v∗∗)y1?t (n) =
∑
n

(vn− v∗∗)z?t (n)r1?t (n)≥ 0,

by (ICr
0) =

T−1∑
n=−T+1

(vn− v∗∗)y0?t (n) =
∑
n

(vn− v∗∗)z?t (n)r0?t (n)≤ 0,

by (ICr
0) =

T−1∑
n=−T+1

(vn− v∗)y0?t (n) =
∑
n

(vn− v∗)z?t (n)r0?t (n)≥ 0,

by (ICr
−1) =

T−1∑
n=−T+1

(vn− v∗)y−1?t (n) =
∑
n

(vn− v∗)z?t (n)r−1?t (n)≤ 0.

Furthermore, it is straightforward to see that

π? = p

T∑
t=1

∑
n

z?t (n)
[
r1?t (n) +unr

0?
t (n)

]
= p

T∑
t=1

T−1∑
n=−T+1

[
y1?t (n) +uny

0?
t (n)

]
≤ optimal objective value of (11).

(B.17)

On the other hand, let yi?t (n) for i ∈ {1,0,−1}, n = −T + 1, · · · , T − 1 and t = 1, · · · , T be the optimal

solution to (11). We can verify below that z?t (n) and ri?t (n) for i∈ {1,0,−1} defined by (10) (with r?t (n) being

any vector satisfying (R) for z?t (n) = 0) is a feasible solution to (9). First, notice that (R) is also satisfied for

z?t (n)> 0, following from (10) and the fact that yi?t (n)≥ 0 for all i ∈ {1,0,−1}, n=−T + 1, · · · , T − 1 and

t= 1, · · · , T ,

r1?t (n) + r0?t (n) + r−1?t (n) =
∑

i∈{1,0,−1}

yi?t (n)

z?t (n)
=
z?t (n)

z?t (n)
= 1.

Second, by utilizing the fact that z1(0) = 1 and z1(n) = 0 for all n 6= 0 and (10), we have

z?t (n)− z?1(n) =un−1

t−1∑
s=1

y0?s (n− 1) + (1−un+1)

t−1∑
s=1

y0?s (n+ 1)−
t−1∑
s=1

y0?s (n),

which can equivalently be written as[
z?t (n)− z?t−1(n)

]
+
[
z?t−1(n)− z?t−2(n)

]
+ · · ·+ [z?2(n)− z?1(n)] =
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un−1

t−1∑
s=1

z?s (n− 1)r0?s (n− 1) + (1−un+1)

t−1∑
s=1

z?s (n+ 1)r0?s (n+ 1)−
t−1∑
s=1

z?s (n)r0?s (n),

that immediately establishes the feasibility of z?t (n) and ri?t (n) for i∈ {1,0,−1} defined by (10), for constraint

(N). Again by (10), we also have∑
n

(vn− v∗∗)z?t (n)r1?t (n) =

T−1∑
n=−T+1

(vn− v∗∗)y1?t (n)≥ 0,

∑
n

(vn− v∗∗)z?t (n)r0?t (n) =

T−1∑
n=−T+1

(vn− v∗∗)y0?t (n)≤ 0,

∑
n

(vn− v∗)z?t (n)r0?t (n) =

T−1∑
n=−T+1

(vn− v∗)y0?t (n)≥ 0,

∑
n

(vn− v∗)z?t (n)r−1?t (n) =

T−1∑
n=−T+1

(vn− v∗)y−1?t (n)≤ 0.

establishing the IC constraints (ICr
1)-(ICr

−1), respectively. Furthermore, it is straightforward to see that

optimal objective value of (11) = p

T∑
t=1

T−1∑
n=−T+1

[
y1?t (n) +uny

0?
t (n)

]
= p

T∑
t=1

∑
n

z?t (n)
[
r1?t (n) +unr

0?
t (n)

]
≤ π?

(B.18)

which, combined with (B.17), implies that optimal objective value of (11) = π?, establishing the theorem. �

Appendix C: Proofs in Sections 5 and 6

Proof of Proposition 6. We prove this proposition by induction. It is straightforward to see (12) holds

for customer t= 1, since `r1 = 0 by definition and we have z1(0) = 1, z1(n) = 0 ∀n 6= 0 by (N).

Now, suppose that (12) holds for customer t (i.e., induction hypothesis) and `rt = s. If r0t (n)≡ 1 or equiv-

alently `rt+1 = `rt + 1 = s+ 1, for an arbitrary net purchase position n with n≡ s+ 1 (mod2) and |n| ≤ s+ 1,

we have

zt+1(n) = [qvn−1 + (1− q)(1− vn−1)︸ ︷︷ ︸
un−1

]zt(n− 1) + [(1− q)vn+1 + q(1− vn+1)︸ ︷︷ ︸
1−un+1

]zt(n+ 1), (C.1)

by (N) as r0t (n) = 1 ∀n. For |n| ≤ s− 1, substituting the definition of vn in (8) into (C.1) and using our

induction hypothesis, we obtain

zt+1(n) =
v0q

n + (1− v0)(1− q)n
v0qn−1 + (1− v0)(1− q)n−1

(
s

s+n−1
2

)[
v0q

s+n−1
2 (1− q) s−n+1

2 + (1− v0)(1− q) s+n−1
2 q

s−n+1
2

]
+
v0q

n+1(1− q) + (1− v0)q(1− q)n+1

v0qn+1 + (1− v0)(1− q)n+1

(
s

s+n+1
2

)[
v0q

s+n+1
2 (1− q) s−n−1

2 + (1− v0)(1− q) s+n+1
2 q

s−n−1
2

]
=

[(
s

s+n−1
2

)
+

(
s

s+n+1
2

)][
v0q

s+n+1
2 (1− q) s−n+1

2 + (1− v0)(1− q) s−n+1
2 q

s+n+1
2

]
=

(
s+ 1
s+1+n

2

)[
v0q

s+1+n
2 (1− q) s+1−n

2 + (1− v0)(1− q) s+1+n
2 q

s+1−n
2

]
= ζ(`rt+1, n).

For n= s+ 1, we have zt(n+ 1) = 0 in (C.1) by (N) and hence

zt+1(n) =
v0q

n + (1− v0)(1− q)n
v0qn−1 + (1− v0)(1− q)n−1

[
v0q

n−1 + (1− v0)(1− q)n−1
]
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= [v0q
n + (1− v0)(1− q)n] = ζ(`rt+1, n).

For n=−s− 1, we have zt(n− 1) = 0 in (C.1) by (N) and hence

zt+1(n) =
v0q

n+1(1− q) + (1− v0)q(1− q)n+1

v0qn+1 + (1− v0)(1− q)n+1

[
v0(1− q)−n−1 + (1− v0)q−n−1

]
=v0q

n+1(1− q) + (1− v0)q(1− q)n+1
[
q−n−1(1− q)−n−1

]
= [v0(1− q)−n + (1− v0)q−n] = ζ(`rt+1, n).

Thus, (12) holds for customer t+ 1. If r0t (n) ≡ 0 or equivalently `rt+1 = `rt = s on the other hand, we have

zt+1(n) = zt(n) ∀n by (N) as r0t (n) = 0 ∀n. Thus, our induction hypothesis immediately implies that (12)

holds again for customer t+ 1. This completes the proof. �

Lemma C.1 (Properties of ζ(·, ·)). For any integers s ≥ 0 and k ≡ s(mod 2), ζ(·, ·) defined in (12)

satisfies the following properties,∑
n

vnζ(s,n) =
∑
n

vnζ(s+ 1, n) = v0, (C.2)∑
n>k

(vn− v∗∗)ζ(s,n) =
∑

n>k+1

(vn− v∗∗)ζ(s+ 1, n) + (vk+1− v∗∗)ζ(s, k+ 2)(1−uk+2), (C.3)∑
n>k−1

(vn− v∗∗)ζ(s+ 1, n) =
∑
n>k

(vn− v∗∗)ζ(s,n) + (vk+1− v∗∗)ζ(s, k)uk, (C.4)∑
n<k

(vn− v∗)ζ(s,n) =
∑
n<k−1

(vn− v∗)ζ(s+ 1, n) + (vk−1− v∗)ζ(s, k− 2)uk−2, (C.5)∑
n<k+1

(vn− v∗)ζ(s+ 1, n) =
∑
n<k

(vn− v∗)ζ(s,n) + (vk−1− v∗)ζ(s, k)(1−uk). (C.6)

Proof of Lemma C.1. First, notice that

vn = vn+1un + vn−1(1−un) ∀n. (C.7)

which is directly established by utilizing (8) and the description of un in Proposition 4:

vn =qvn + (1− q)vn

=
qv0 + (1− q)(1− v0)( 1−q

q
)n

v0 + (1− v0)( 1−q
q

)n+1︸ ︷︷ ︸
q

v0

v0 + (1− v0)( 1−q
q

)n︸ ︷︷ ︸
vn

+
(1− q)v0 + q(1− v0)( 1−q

q
)n

v0 + (1− v0)( 1−q
q

)n−1︸ ︷︷ ︸
1−q

v0

v0 + (1− v0)( 1−q
q

)n︸ ︷︷ ︸
vn

=
v0

v0 + (1− v0)( 1−q
q

)n+1︸ ︷︷ ︸
vn+1

qv0 + (1− q)(1− v0)( 1−q
q

)n

v0 + (1− v0)( 1−q
q

)n︸ ︷︷ ︸
un

+
v0

v0 + (1− v0)( 1−q
q

)n−1︸ ︷︷ ︸
vn−1

(1− q)v0 + q(1− v0)( 1−q
q

)n

v0 + (1− v0)( 1−q
q

)n︸ ︷︷ ︸
(1−un)

.

Now note that by Proposition 6, we can write (C.1) as

ζ(s+ 1, n) = ζ(s,n− 1)un−1 + ζ(s,n+ 1)(1−un+1) ∀n,s≥0, (C.8)

which, in turn, implies ∑
n

ζ(s,n) =
∑
n

ζ(s+ 1, n) = 1. ∀s≥0 (C.9)
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Where the second equality follows by the fact that ζ(0,0) = 1 and ζ(0, n) = 0 ∀n 6=0. For any s≥ 0, by (C.7),∑
n

vnζ(s,n) =
∑
n

{vn+1ζ(s,n)un + vn−1ζ(s,n)(1−un)}

=
∑
n

{vnζ(s,n− 1)un−1 + vnζ(s,n+ 1)(1−un+1)}

by (C.8) =
∑
n

vnζ(s+ 1, n),

hence establishing the first equality of (C.2). The second equality of (C.2) follows from the fact that ζ(0,0) = 1

and ζ(0, n) = 0 ∀n 6= 0.

Notice that for an arbitrary constant c, by (C.2),∑
n

(vn− c)ζ(s,n) =
∑
n

(vn− c)ζ(s+ 1, n),

following from (C.9). Subtracting
∑

n≤k(vn− c)ζ(s,n) from both sides yields∑
n>k

(vn− c)ζ(s,n) =
∑
n

(vn− c)ζ(s+ 1, n)︸ ︷︷ ︸
A

−
∑
n≤k

(vn+1− c)ζ(s,n)un + (vn−1− c)ζ(s,n)(1−un)︸ ︷︷ ︸
B

,

where B follows by (C.7). Then, re-arranging terms in A and B and utilizing (C.8) yield

A=
∑
n>k

(vn− c)ζ(s+ 1, n) +
∑
n≤k

(vn− c)ζ(s,n+ 1)(1−un+1) +
∑
n≤k

(vn− c)ζ(s,n− 1)un−1, and

B =
∑
n≤k

(vn+2− c)ζ(s,n+ 1)un+1 +
∑
n≤k

(vn− c)ζ(s,n+ 1)(1−un+1),

which imply∑
n>k

(vn− c)ζ(s,n) =
∑
n>k

(vn− c)ζ(s+ 1, n) +
∑
n≤k

(vn− c)ζ(s,n− 1)un−1−
∑
n≤k

(vn+2− c)ζ(s,n+ 1)un+1

=
∑
n>k

(vn− c)ζ(s+ 1, n)− (vk+1− c)ζ(s, k)uk

=
∑

n>k+1

(vn− c)ζ(s+ 1, n) + (vk+1− c)[ζ(s+ 1, k+ 1)− ζ(s, k)uk︸ ︷︷ ︸
=ζ(s,k+2)(1−uk+2) by (C.8)

],

establishing (C.3). Then, (C.4) follows immediately from (C.3) by noting that∑
n>k

(vn− c)ζ(s,n) =
∑
n>k−1

(vn− c)ζ(s+ 1, n)− (vk+1− c)ζ(s+ 1, k+ 1) + (vk+1− c)ζ(s, k+ 2)(1−uk+2)

=
∑
n>k−1

(vn− c)ζ(s+ 1, n)− (vk+1− c)ζ(s, k)uk,

where the last equality again follows from (C.8).

To see (C.5), we have∑
n<k

(vn− c)ζ(s,n) =
∑
n

(vn− c)ζ(s,n)−
∑
n>k

(vn− c)ζ(s,n)− (vk− c)ζ(s, k)

by (C.3) =
∑
n

(vn− c)ζ(s+ 1, n)−
∑

n>k+1

(vn− c)ζ(s+ 1, n)− (vk+1− c)ζ(s, k+ 2)(1−uk+2)− (vk− c)ζ(s, k)

=
∑
n<k−1

(vn− c)ζ(s+ 1, n) + (vk−1− c) ζ(s+ 1, k− 1)︸ ︷︷ ︸
=ζ(s,k−2)uk−2+ζ(s,k)(1−uk) by (C.8)
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+ (vk+1− c)[ζ(s+ 1, k+ 1)− (vk+1− c)ζ(s, k+ 2)(1−uk+2)︸ ︷︷ ︸
=ζ(s,k)uk by (C.8)

]− (vk− c)ζ(s, k)

=
∑
n<k−1

(vn− c)ζ(s+ 1, n) + (vk−1− c)ζ(s, k− 2)uk−2

+ ζ(s, k)[(vk−1− c)(1−uk) + (vk+1− c)uk− (vk− c)︸ ︷︷ ︸
=0 by (C.7)

]

=
∑
n<k−1

(vn− c)ζ(s+ 1, n) + (vk−1− c)ζ(s, k− 2)uk−2.

Finally, we show (C.6). By (C.5),∑
n<k

(vn− c)ζ(s,n) =
∑
n<k−1

(vn− c)ζ(s+ 1, n) + (vk−1− c)ζ(s, k− 2)uk−2

by (C.8) =
∑
n<k−1

(vn− c)ζ(s+ 1, n) + (vk−1− c)ζ(s+ 1, k− 1)− (vk−1− c)ζ(s, k)(1−uk)

=
∑

n<k+1

(vn− c)ζ(s+ 1, n)− (vk−1− c)ζ(s, k)(1−uk),

establishing (C.6). �

Proof of Proposition 7. First, note that when r0t (n) = 1 for any n, (ICr
0) can be written as

∑
n
vnzt(n)∈

[v∗, v∗∗). By Proposition 6, we can write the left-hand-side of the above constraint as∑
n

vnzt(n) =
∑
n

vnζ(`rt , n) = v0, (C.10)

where the second equality follows from (C.2). Thus, (ICr
0) is equivalent to v0 ∈ [v∗, v∗∗). Next, utilizing (3),

we show that the expected revenue the platforms earns from neutral customer t is

p E [1[at = 1] |mt = 0, r] = p P [at = 1 |mt = 0, r]

= p
∑
n

P[St = 1|N(Ht) = n]︸ ︷︷ ︸
=qvn+(1−q)(1−vn)

P[N(Ht) = n|r]︸ ︷︷ ︸
zt(n)

= p [q
∑
n

vnzt(n)︸ ︷︷ ︸
=v0 by
(C.10)

+(1− q)
∑
n

vn− vnzt(n))︸ ︷︷ ︸
=1−v0 by

(C.10) and (C.9)

] = pu0,

following from u0 = qv0 + (1− q)(1− v0) definition given in Proposition 6. �

Lemma C.2. If it is incentive compatible to partition customer t as an affirmative customer under an

NA-partition policy r̂ with `r̂t = s, then there must uniquely exist x∈ [0,1) and k≡ s(mod2) with k≤ s, such

that
∑

n zt(n)r1t (n) =
∑

n zt(n)r̂1t (n),
∑

n(vn − v∗∗)zt(n)r1t (n)≥ 0 and
∑

n(vn − v∗)zt(n)r−1t (n)≤ 0, where r

is a threshold affirmative policy defined as

r1t (n) :=

 1, for n> k,
x∈ [0,1), for n= k,
0, for n< k,

and r−1t (n) := 1− r1t (n) ∀n. (C.11)

Proof of Lemma C.2. First we show the existence of k and x. If there do not exist n < n with n,n ≡
s(mod2) and |n|, |n| ≤ s such that r̂1t (n)> 0 and r̂−1t (n) = 1− r̂1t (n)> 0, then there must exist x∈ [0,1) and

k≡ s(mod2) with k≤ s such that

r̂1t (n) =

 1, for n> k,
x∈ [0,1), for n= k,
0, for n< k,

and r̂−1t (n) = 1− r̂1t (n) ∀n≡ s(mod2) and |n| ≤ s.
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In this case, define rt according to (C.11) with x and k identified above. Then, because zt(n)> 0 if and only

if n≡ s(mod2) and |n| ≤ s by (12), we immediately have∑
n

zt(n)r1t (n) =
∑
n

zt(n)r̂1t (n),∑
n

(vn− v∗∗)zt(n)r1t (n) =
∑
n

(vn− v∗∗)zt(n)r̂1t (n)≥ 0, and∑
n

(vn− v∗)zt(n)r−1t (n) =
∑
n

(vn− v∗)zt(n)r̂−1t (n)≤ 0.

Now suppose that there exist n< n with n,n≡ s(mod2) and |n|, |n| ≤ s such that r̂1t (n)> 0 and r̂−1t (n)> 0.

We demonstrate that r̂t can be converted to a threshold affirmative policy r̃t with the desired properties

(i.e.,
∑

n
zt(n)r̃1t (n) =

∑
n
zt(n)r̂1t (n),

∑
n
(vn−v∗∗)zt(n)r̃1t (n)≥ 0 and

∑
n
(vn−v∗)zt(n)r̃−1t (n)≤ 0), in which

such n and n do not exist. To that end, we define r̃t according to

r̃1t (n) = r̂1t (n)−α, r̃−1t (n) = r̂−1t (n) +α, r̃−1t (n) = r̂−1t (n)−β, r̃1t (n) = r̂1t (n) +β, and r̃t(n) = r̂t(n) ∀n 6= {n,n},

where α∈ (0, r̂1t (n)] and β ∈ (0, r̂−1t (n)] are given by

α=
zt(n)

zt(n)
r̂−1t (n) and β = r̂−1t (n), if

r̂−1t (n)

r̂1t (n)
≤ zt(n)

zt(n)
, (C.12)

α= r̂1t (n) and β =
zt(n)

zt(n)
r̂1t (n), if

r̂−1t (n)

r̂1t (n)
>
zt(n)

zt(n)
. (C.13)

In both cases (C.12) and (C.13), we have zt(n)α= zt(n)β. Thus,∑
n

zt(n)r̃1t (n) =
∑

n 6={n,n}
zt(n)r̃1t (n) + zt(n)r̃1t (n) + zt(n)r̃1t (n)

=
∑

n 6={n,n}
zt(n)r̂1t (n) + zt(n)r̂1t (n) + zt(n)r̂1t (n)−zt(n)α+ zt(n)β︸ ︷︷ ︸

=0

=
∑
n

zt(n)r̂1t (n), (C.14)∑
n

(vn− v∗∗)zt(n)r̃1t (n) =
∑
n

(vn− v∗∗)zt(n)r̂1t (n) + zt(n)β(vn− v∗∗)− zt(n)α(vn− v∗∗),

=
∑
n

(vn− v∗∗)zt(n)r̂1t (n) + zt(n)β(vn− v∗∗)− zt(n)β(vn− v∗∗),

(by (8), utilizing n< n) ≥
∑
n

(vn− v∗∗)zt(n)r̂1t (n)≥ 0, (C.15)∑
n

(vn− v∗)zt(n)r̃−1t (n) =
∑
n

(vn− v∗)zt(n)r̂−1t (n) + zt(n)α(vn− v∗)− zt(n)β(vn− v∗),

=
∑
n

(vn− v∗)zt(n)r̂−1t (n) + zt(n)β(vn− v∗)− zt(n)β(vn− v∗),

(by (8), utilizing n< n) ≤
∑
n

(vn− v∗)zt(n)r̂−1t (n)≤ 0. (C.16)

In the case of (C.12), we have r̃1t (n) = 1 and hence r̃−1t (n) = 0; in the case of (C.13), we have r̃−1t (n) = 1

and hence r̃1t (n) = 0. Thus, repeating the above iterative procedure until there do not exist n < n with

n,n≡ s(mod2) and |n|, |n| ≤ s such that r̃1t (n)> 0 and r̃−1t (n)> 0 will result in a threshold affirmative policy

r̃t (as in (C.11)) that preserves (C.14), (C.15) and (C.16).
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To establish uniqueness of k and x, we first note that
∑

n
zt(n)r̂1t (n) ∈ [0,1). Suppose on the contrary,∑

n zt(n)r̂1t (n) = 1, which is equivalent to r̂1t (n) = 1 ∀n by (C.9). However, this contradicts with the fact that

it is incentive compatible to partition customer t as an affirmative customer since (ICr
1) would be violated,

such that∑
n

(vn− v∗∗)zt(n)r̂1t (n) =
∑
n

(vn− v∗∗)zt(n)
by (C.9)

=
∑
n

vnzt(n)− v∗∗ by (C.10)
= v0− v∗∗ < 0. (C.17)

Next, notice by (C.9) (utilizing Proposition 6) that we have
∑

n>k
zt(n) = 1 if and only if k < −s and∑

n>k
zt(n) = 0 if and only if k ≥ s. Therefore, as

∑
n>k

zt(n) is non-increasing in k, there uniquely exist

an integer k ≡ s(mod2) with |k| ≤ s such that
∑

n>k zt(n) ≤∑n zt(n)r̂1t (n) <
∑

n>k−2 zt(n). Hence x =∑
n zt(n)r̂

1
t (n)−

∑
n>k zt(n)

zt(k)
∈ [0,1). �

Proof of Proposition 8. We divide the proof into three parts.

Part I. (14) and (15) are well-defined, which consists in showing the existence of n∗∗(s), x∗∗(s), n∗(s)

and x∗(s) for any integer s≥ 0, as characterized by the following two claims.

Claim C.1. n∗∗(s)≡ s(mod2), vn∗∗(s) < v
∗∗ and x∗∗(s)< 1.

Proof of Claim C.1 First, note that for any n 6≡ s(mod2) that satisfies the equality inside (14), we also

have ∑
m>n−1

(vm− v∗∗)ζ(s,m) = (vn− v∗∗)ζ(s,n)x+
∑
m>n

(vm− v∗∗)ζ(s,m) = 0,

as ζ(s,n) = 0 for all n 6≡ s(mod2) by (12). Hence, by (14), n∗∗(s)≡ s(mod2). Notice also that we must have

x∗∗(s)< 1 if n∗∗(s) =−s, as otherwise, by (C.17) and the fact that v0 ∈ [v∗, v∗∗), the equation inside (14)

must be violated∑
m≥−s

(vm− v∗∗)ζ(s,m) =
∑
m

(vm− v∗∗)ζ(s,m) =
∑
m

(vm)ζ(s,m)− v∗∗ = v0− v∗∗ < 0.

Further, for any n≥−s+ 2 that satisfies the equality inside (14) for x= 1, we also have∑
m>n−2

(vm− v∗∗)ζ(s,m) = (vn− v∗∗)ζ(s,n) +
∑
m>n

(vm− v∗∗)ζ(s,m) = 0,

hence, by (14), (i) x∗∗(s)< 1.

• When vs < v
∗∗, we have vm < v

∗∗ for all m with ζ(s,m)> 0 by (8). Hence, it is straightforward to verify

that the equality inside (14) holds for n= s,x= 0. For any n< s, we have

(vn− v∗∗)︸ ︷︷ ︸
<0 as vn<vs<v∗∗

ζ(s,n)x+
∑
m>n

(vm− v∗∗)ζ(s,m)︸ ︷︷ ︸
<0 for m with ζ(s,m)>0

≤ (vs− v∗∗)ζ(s, s)< 0,

contradicting the equality inside (14). Notice that vn∗∗(s) < v
∗∗ as n∗∗(s) = s, by (8) and the fact that vs < v

∗∗.

• When vs = v∗∗, we have vm ≤ v∗∗ for all m with ζ(s,m)> 0 by (8). Hence, it is straightforward to verify

that the equality inside (14) holds for n= s− 2, x= 0. For any n< s− 2, we have

(vn− v∗∗)︸ ︷︷ ︸
<0 as vn<vs=v∗∗

ζ(s,n)x+
∑
m>n

(vm− v∗∗)ζ(s,m)︸ ︷︷ ︸
<0 for m<s with ζ(s,m)>0

=0 for m=s

≤ (vs−2− v∗∗)ζ(s, s− 2)< 0,

contradicting the equality inside (14). Notice that vn∗∗(s) < v∗∗ as n∗∗(s) = s− 2, by (8) and the fact that

vs = v∗∗.
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• When vs > v
∗∗, denote fs(n) :=

∑
m>n

(vm−v∗∗)ζ(s,m). It is then straightforward to verify that fs(n) is

positive and non-increasing in n≤ s−2 for vn ≥ v∗∗ (because fs(n)≥ fs(s−2) = (vs−v∗∗)ζ(s, s)> 0 = fs(s)),

and fs(n) is non-decreasing in n for vn ≤ v∗∗ with fs(−s− 2) =
∑

m>−s−2(vm − v∗∗)ζ(s,m) = v0 − v∗∗ < 0.

Therefore, (ii) there exists a unique n∗∗(s)∈ [−s, s−2] satisfying fs(n
∗∗(s)−2)< 0≤ fs(n∗∗(s)). Accordingly,

let

x∗∗(s) =

∑
m>n∗∗(s)(vm− v∗∗)ζ(s,m)

(v∗∗− vn∗∗(s))ζ(s,n∗∗(s))
=

fs(n
∗∗(s))− 0

fs(n∗∗(s))− fs(n∗∗(s)− 2)
∈ [0,1).

Then, it immediately follows that (iii) (n∗∗(s), x∗∗(s)) satisfies the equality inside (14). For any n < n∗∗(s),

the equation inside (14) must be violated, because then we must have (iv) (vn− v∗∗)< (vn∗∗(s)− v∗∗)< 0 by

(8), as (v∗∗− vn∗∗(s))≥ (v∗∗− vn∗∗(s))ζ(s,n∗∗(s)) = fs(n
∗∗(s))−fs(n∗∗(s)−2)> 0 by (ii). Then, the equation

inside (14) can be written as

0 = (vn− v∗∗)ζ(s,n)︸ ︷︷ ︸
≤0 by (iv)

x+ (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))︸ ︷︷ ︸
<0 by (ii)

(1−x∗∗(s))︸ ︷︷ ︸
>0 by (i)

+ (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))x∗∗(s) +
∑

m>n∗∗(s)

(vm− v∗∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (iii)

+
∑

m∈(n,n∗∗(s))

(vm− v∗∗)ζ(s,m),

leading to a contradiction, whereby we use the fact that vn < vm < vn∗∗(s) < v
∗∗ for all (if any) m∈ (n,n∗∗(s))

by (8). Lastly, notice that vn∗∗(s) < v
∗∗ as vs > v

∗∗ and ζ(s,n∗∗(s))> 0 by (ii). �

Claim C.2. n∗(s)≡ s(mod2), vn∗(s) ≥ v∗ and x∗(s)≤ 1, where the second equality holds only when v0 = v∗

and s= 0, and the third equality holds only when v0 = v∗.

Proof of Claim C.2 First, note that for any n 6≡ s(mod2) that satisfies the equality inside (15), we also

have ∑
m<n+1

(vm− v∗)ζ(s,m) = (vn− v∗)ζ(s,n)(1−x) +
∑
m<n

(vm− v∗)ζ(s,m) = 0,

as ζ(s,n) = 0 for all n 6≡ s(mod2) by (12). Hence, by (15), n∗∗(s) ≡ s(mod2). Next, notice that for any

n≤ s− 2 that satisfies the equality inside (15) for x= 0, we also have∑
m<n+2

(vm− v∗)ζ(s,m) = (vn− v∗)ζ(s,n) +
∑
m<n

(vm− v∗)ζ(s,m) = 0,

hence, by (15), (v) x∗(s)> 0.

• When v−s > v
∗, we have vm > v

∗ for all m with ζ(s,m)> 0 by (8). Hence, it is straightforward to verify

that the equality inside (15) holds for n=−s,x= 1. For any n>−s, we have

(vn− v∗)︸ ︷︷ ︸
>0 as vn>v−s>v∗

ζ(s,n)︸ ︷︷ ︸
>0 as

n≡s(mod2),n≤s

(1−x) +
∑
m<n

(vm− v∗)ζ(s,m)︸ ︷︷ ︸
>0 for m with ζ(s,m)>0

≥ (v−s− v∗)ζ(s, s)> 0,

contradicting the equality inside (15). Notice that vn∗(s) > v
∗ as n∗(s) =−s, by (8) and the fact that v−s > v

∗.

• When v−s = v∗, we have vm ≥ v∗ for all m with ζ(s,m)> 0 by (8). Hence, it is straightforward to verify

that the equality inside (15) holds for n=−s+ 2, x= 0. For any n>−s+ 2, we have

(vn− v∗)︸ ︷︷ ︸
>0 as

vn>v−s=v
∗

ζ(s,n)︸ ︷︷ ︸
>0 as

n≡s(mod2),n≤s

x+
∑
m<n

(vm− v∗)ζ(s,m)︸ ︷︷ ︸
>0 for m>−s with ζ(s,m)>0

=0 for m=−s

≥ (v−s+2− v∗)ζ(s,−s+ 2)> 0,

contradicting the equality inside (15). Notice that vn∗(s) > v
∗ by (8) and the fact that v−s = v∗.
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• When v−s < v
∗, denote fs(n) :=

∑
m<n

(vm − v∗)ζ(s,m). When v−s < v∗, it is straightforward to verify

that fs(n) is negative and non-increasing in n ≥ −s+ 2 for vn ≤ v∗ (because fs(n) ≤ fs(−s+ 2) = (v−s −
v∗)ζ(s,−s) < 0 = fs(−s)), and fs(n) is non-decreasing in n for vn ≥ v∗ with fs(s + 2) =

∑
m<s+2(vm −

v∗)ζ(s,m) = v0 − v∗ ≥ 0. Therefore, (vi) there exists a unique n∗(s) ∈ [−s+ 2, s] satisfying fs(n
∗(s))≤ 0<

fs(n
∗(s) + 2). Accordingly, let

1−x∗(s) =

∑
m<n∗(s)(vm− v∗)ζ(s,m)

(v∗− vn∗(s))ζ(s,n∗(s))
=

fs(n
∗(s))− 0

fs(n∗(s))− fs(n∗(s) + 2)
∈ [0,1).

Then, it immediately follows that (vii) (n∗(s), x∗(s)) satisfies the equality inside (15). For any n> n∗(s), the

equation inside (15) must be violated, because then we must have (viii) (vn− v∗)> (vn∗(s)− v∗)> 0 by (8),

as (vn∗(s) − v∗) ≥ (vn∗(s) − v∗)ζ(s,n∗(s)) = fs(n
∗(s) + 2)− fs(n∗(s)) > 0 by (vi). Then, the equation inside

(15) can be written as

0 = (vn− v∗)︸ ︷︷ ︸
>0 by (viii)

ζ(s,n)︸ ︷︷ ︸
>0 by (N)

as n≤s

(1−x) + (vn∗(s)− v∗)ζ(s,n∗(s))︸ ︷︷ ︸
<0 by (vi)

(1−x∗(s))︸ ︷︷ ︸
>0 by (v)

+ (vn∗(s)− v∗)ζ(s,n∗(s))(1−x∗(s)) +
∑

m<n∗(s)

(vm− v∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (vii)

+
∑

m∈(n∗(s),n)

(vm− v∗)ζ(s,m),

leading to a contradiction, whereby we use the fact that v∗ < vn∗(s) < vm < vn for all (if any) m ∈ (n∗(s), n)

by (8). Lastly, notice that vn∗(s) > v
∗ as v−s < v

∗ and ζ(s,n∗(s))> 0 by (vi). �

Part II. It is incentive compatible to partition customer t as an affirmative customer if and

only if n∗(s)>n∗∗(s) or n∗(s) = n∗∗(s) with x∗∗(s)≥ x∗(s), where s= `rt .

To show the sufficiency, we now demonstrate the following threshold affirmative policy simultaneously

satisfies (ICr
1) and (ICr

−1):

r1t (n) :=

 1, for n> n∗∗(s),
x∗∗(s)∈ [0,1], for n= n∗∗(s),
0, for n< n∗∗(s),

and r−1t (n) := 1− r1t (n) ∀n. (C.18)

Indeed, by (14), we have∑
n

(vn− v∗∗)zt(n)r1t (n) =
(
vn∗∗(s)− v∗∗

)
ζ(s,n∗∗(s))x∗∗(s) +

∑
n>n∗∗(s)

(vn− v∗∗)ζ(s,n) = 0, (C.19)

establishing (ICr
1). To establish (ICr

−1), we now show∑
n

(vn− v∗)zt(n)r−1t (n) =
(
vn∗∗(s)− v∗

)
ζ(s,n∗∗(s))(1−x∗∗ (s)) +

∑
n<n∗∗(s)

(vn− v∗)ζ(s,n)≤ 0. (C.20)

• For n∗(s)>n∗∗(s), by Claim C.2 we have vn∗(s) ≥ v∗, which leads to (vn∗(s)−v∗)ζ(s,n∗(s))(1−x∗(s))≥ 0.

Hence, by (15), we have
∑

n<n∗(s)(vn − v∗)ζ(s,n)≤ 0. Then, it is straightforward to see that (C.20) holds,

such that

0≥
∑

n<n∗(s)

(vn− v∗)ζ(s,n)≥max

 ∑
n<n∗∗(s)

(vn− v∗)ζ(s,n),
∑

n≤n∗∗(s)

(vn− v∗)ζ(s,n)


≥
(
vn∗∗(s)− v∗

)
ζ(s,n∗∗(s))(1−x∗∗ (s)) +

∑
n<n∗∗(s)

(vn− v∗)ζ(s,n),

where the second inequality follows by n∗(s)> n∗∗(s) as vn increases in n by (8), and the third inequality

follows from the fact that x∗∗(s)∈ [0,1].
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• For n∗(s) = n∗∗(s) with x∗∗(s) ≥ x∗(s), by Claim C.2 we have vn∗(s) ≥ v∗, which leads to (vn∗(s) −
v∗)ζ(s,n∗(s))(1−x∗(s))≥ 0. Hence, by (15), we have

0 =
(
vn∗(s)− v∗

)
ζ(s,n∗(s))(1−x∗(s))︸ ︷︷ ︸
≥0

+
∑

n<n∗(s)

(vn− v∗)ζ(s,n)

=
(
vn∗∗(s)− v∗

)
ζ(s,n∗∗(s))(1−x∗(s)) +

∑
n<n∗∗(s)

(vn− v∗)ζ(s,n)

≥
(
vn∗∗(s)− v∗

)
ζ(s,n∗∗(s))(1−x∗∗(s)) +

∑
n<n∗∗(s)

(vn− v∗)ζ(s,n),

where the second equality follows by n∗(s) = n∗∗(s), and the third inequality follows from vn∗∗(s) = vn∗(s) ≥ v∗

by Claim C.2 and the fact that x∗∗(s)≥ x∗(s). Thus, (C.20) holds.

To show necessity, we note that, if it is incentive compatible to partition customer t (when `rt = s) as an

affirmative customer, Lemma C.2 implies the existence of x ∈ [0,1) and k ≡ s(mod2) with k ≤ s, such that

rt specified in (C.18) satisfies (ICr
1),∑

n

(vn− v∗∗)zt(n)r1t (n) = (vk− v∗∗) ζ(s, k)x+
∑
n>k

(vn− v∗∗)ζ(s,n)≥ 0, (C.21)

and (ICr
−1), ∑

n

(vn− v∗)zt(n)r−1t (n) = (vk− v∗) ζ(s, k)(1−x) +
∑
n<k

(vn− v∗)ζ(s,n)≤ 0. (C.22)

We now claim (C.21) and (C.22) must imply n∗(s)>n∗∗(s) or n∗(s) = n∗∗(s) with x∗∗(s)≥ x∗(s). To that

end, we first establish the following lemma, whose proof is relegated after the proof of Proposition 8.

Lemma C.3. If it is incentive compatible to partition customer t (when `rt = s) as an affirmative customer,

(n∗∗(s), x∗∗(s)), (n∗(s), x∗(s)) and (x,k) determined by (14), (15) and (C.18) of Lemma C.2 respectively,

satisfy

either k > n∗∗(s) or k= n∗∗(s) with x≤ x∗∗(s), and (C.23)

either k < n∗(s) or k= n∗(s) with x∗(s)≤ x. (C.24)

Lemma C.3 immediately implies that n∗(s)≥ n∗∗(s), as n∗(s)≥ k ≥ n∗∗(s) by (C.23) and (C.24). In partic-

ular, when n∗(s) = n∗∗(s) = k, we have x∗∗(s)≥ x≥ x∗(s).
Part III. If it is incentive compatible to partition customer t as an affirmative customer,

then partitioning any other customer t′ > t as an affirmative customer will also be incentive

compatible; and it is optimal for the platform to offer affirmative recommendations according

to (C.18) and to earn an expected revenue of pF (s), where

F (s) = x∗∗(s)ζ(s,n∗∗ (s)) +
∑

n>n∗∗(s)

ζ(s,n),

is a non-decreasing function in s. In Part II, we show for customer t with `rt = s≥ τ◦, that the threshold

affirmative policy given by (C.18) simultaneously satisfies (ICr
1) and (ICr

−1) for n∗(s) > n∗∗(s) or n∗(s) =

n∗∗(s) with x∗∗(s)≥ x∗(s). Now, for customer t′ > t with `rt′ = s+ 1, consider the following policy

r1t′(n) :=


1, for n> n∗∗(s) + 1,
x∗∗(s)ζ(s,n∗∗(s))un∗∗(s)+ζ(s,n

∗∗(s)+2)(1−un∗∗(s)+2)

ζ(s+1,n∗∗(s)+1)
, for n= n∗∗(s) + 1,

x∗∗(s)ζ(s,n∗∗(s))(1−un∗∗(s))

ζ(s+1,n∗∗(s)−1) , for n= n∗∗(s)− 1,

0, for n< n∗∗(s)− 1,

and r−1t′ (n) := 1−r1t′(n) ∀n.

(C.25)
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Then, we have∑
n

(vn− v∗∗)ζ(s+ 1, n)r1t′(n) =
∑

n>n∗∗(s)+1

(vn− v∗∗)ζ(s+ 1, n)

+ (vn∗∗(s)+1− v∗∗)
[
x∗∗(s)ζ(s,n∗∗(s))un∗∗(s) + ζ(s,n∗∗(s) + 2)(1−un∗∗(s)+2)

]
+ (vn∗∗(s)−1− v∗∗)

[
x∗∗(s)ζ(s,n∗∗(s))(1−un∗∗(s))

]
=

∑
n>n∗∗(s)+1

(vn− v∗∗)ζ(s+ 1, n) + (vn∗∗(s)+1− v∗∗)ζ(s,n∗∗(s) + 2)(1−un∗∗(s)+2)

︸ ︷︷ ︸∑
n>n∗∗(s)(vn−v∗∗)ζ(s,n) by (C.3)

+x∗∗(s)ζ(s,n∗∗(s))
[
(vn∗∗(s)+1− v∗∗)un∗∗(s) + (vn∗∗(s)−1− v∗∗)(1−un∗∗(s))

]︸ ︷︷ ︸
vn∗∗(s)−v∗∗ by (C.7)

(by (C.19)) =
(
vn∗∗(s)− v∗∗

)
ζ(s,n∗∗(s))x∗∗(s) +

∑
n>n∗∗(s)

(vn− v∗∗)ζ(s,n) = 0.

Therefore, the policy given in (C.25) satisfies (ICr
1). Similarly, we also have∑

n

(vn− v∗)ζ(s+ 1, n)r−1t′ (n) =
∑

n<n∗∗(s)−1

(vn− v∗)ζ(s+ 1, n)

+ (vn∗∗(s)−1− v∗)
[
(1−x∗∗(s))ζ(s,n∗∗(s))(1−un∗∗(s)) + ζ(s,n∗∗(s)− 2)un∗∗(s)−2

]
+ (vn∗∗(s)+1− v∗)

[
(1−x∗∗(s))ζ(s,n∗∗(s))un∗∗(s)

]
=

∑
n<n∗∗(s)−1

(vn− v∗)ζ(s+ 1, n) + (vn∗∗(s)−1− v∗)ζ(s,n∗∗(s)− 2)un∗∗(s)−2︸ ︷︷ ︸∑
n<n∗∗(s)(vn−v∗)ζ(s,n) by (C.5)

+ (1−x∗∗(s))ζ(s,n∗∗(s))
[
(vn∗∗(s)−1− v∗)(1−un∗∗(s)) + (vn∗∗(s)+1− v∗)un∗∗(s)

]︸ ︷︷ ︸
vn∗∗(s)−v∗ by (C.7)

(by (C.20)) =
(
vn∗∗(s)− v∗

)
ζ(s,n∗∗(s))(1−x∗∗ (s)) +

∑
n<n∗∗(s)

(vn− v∗)ζ(s,n)≤ 0.

Therefore, the policy given in (C.25) also satisfies (ICr
−1). Hence, in a recursive manner, we show that if

it is incentive compatible to partition customer t as an affirmative customer, then partitioning any other

customer t′ > t as an affirmative customer will also be incentive compatible. It is straightforward to see,

by Lemma C.2 and (14), that offering affirmative recommendations according to (C.18) is optimal for the

platform. The corresponding expected revenue is then calculated by (11), utilizing (12). Lastly, the expected

revenue that policy given in (C.25) generated from customer t′ is as follows∑
n

r1t′(n)ζ(s+ 1, n) =
∑

n>n∗∗(s)+1

ζ(s+ 1, n) + ζ(s,n∗∗(s) + 2)(1−un∗∗(s)+2)

︸ ︷︷ ︸
=
∑

n>n∗∗(s) ζ(s,n) by (C.8)

+x∗∗(s)ζ(s,n∗∗(s)) = F (s),

which immediately implies F (s)≤ F (s+ 1) by Lemma C.2. �

Proof of Lemma C.3. First, we establish (C.23), by showing

• k≥ n∗∗(s). Suppose k < n∗∗(s), then (i) vk < vn∗∗(s) < v
∗∗ by (8) (first inequality) and Claim C.1 (second

inequality). We then have

(vk− v∗∗)ζ(s, k)x+
∑
m>k

(vm− v∗∗)ζ(s,m)
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= (vk− v∗∗)ζ(s, k)︸ ︷︷ ︸
≤0 by (i)

x+ (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))︸ ︷︷ ︸
<0 by Claim C.1

(1−x∗∗(s))︸ ︷︷ ︸
>0 by Claim C.1

+
∑

m∈(k,n∗∗(s))

(vm− v∗∗)ζ(s,m)

+ (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))x∗∗(s) +
∑

m>n∗∗(s)

(vm− v∗∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (14)

< 0,

leading to a contradiction with (C.21), whereby we use the fact that vk < vm < vn∗∗(s) < v∗∗ for all (if any)

m∈ (k,n∗∗(s)) by (8).

• x≤ x∗∗(s) when k= n∗∗(s). Suppose x> x∗∗(s) when k= n∗∗(s), we then have

(vk− v∗∗)ζ(s, k)x+
∑
m>k

(vm− v∗∗)ζ(s,m)

=(vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))x+
∑

m>n∗∗(s)

(vm− v∗∗)ζ(s,m)

= (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))︸ ︷︷ ︸
<0 by Claim C.1

(x−x∗∗(s))︸ ︷︷ ︸
>0

+ (vn∗∗(s)− v∗∗)ζ(s,n∗∗(s))x∗∗(s) +
∑

m>n∗∗(s)

(vm− v∗∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (14)

<0,

leading to a contradiction with (C.21).

Next, we establish (C.24), by showing

• k≤ n∗(s). First, note that (ii) vn∗(s)+2 > v∗ by (8) and Claim C.2. Further, we have (iii) (vn∗(s) −
v∗)ζ(s,n∗(s))≥ 0, again by Claim C.2. Suppose k > n∗(s), we then have

(vk− v∗)ζ(s, k)(1−x) +
∑
m<k

(vm− v∗)ζ(s,m) = (vn∗(s)− v∗)ζ(s,n∗(s))(1−x∗(s)) +
∑

m<n∗(s)

(vm− v∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (15)

+ (vn∗(s)− v∗)ζ(s,n∗(s))x∗(s)︸ ︷︷ ︸
≥0 by (iii)

+ (vk− v∗)ζ(s, k)(1−x)︸ ︷︷ ︸
>0 by (8) and (ii) as k≥n∗(s)+2,
|k|≤s by Lemma C.2 and x<1

+
∑

m∈(n∗(s),k)

(vm− v∗)ζ(s,m)

>0,

leading to a contradiction with (C.22), whereby we use the fact that v∗ < vn∗(s)+2 ≤ vm for all (if any)

m∈ (n∗(s), k) by (ii).

• x∗(s)≤ x when k= n∗(s). Suppose x∗(s)>x when k= n∗(s). Then, as x∈ [0,1), we must have x∗(s)> 0,

which leads to vn∗(s) > v
∗ by Claim C.2. Therefore, (iv) (vn∗(s)− v∗)ζ(s,n∗(s))> 0. We then have

(vk− v∗)ζ(s, k)(1−x) +
∑
m<k

(vm− v∗)ζ(s,m) =(vn∗(s)− v∗)ζ(s,n∗(s))(1−x) +
∑

m<n∗(s)

(vm− v∗)ζ(s,m)

> (vn∗(s)− v∗)ζ(s,n∗(s))x∗(s) +
∑

m<n∗(s)

(vm− v∗)ζ(s,m)

︸ ︷︷ ︸
=0 by (15)

leading to a contradiction with (C.22), where the second inequality follows by (iv) and the fact that x∗(s)>x.

This completes the proof. �
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Proof of Proposition 9. Under an NA-partition policy, the selling horizon is essentially partitioned

into either neutral customers N (r) := {t= 1, · · · , T : r0t (n)≡ 1 for all n} or affirmative customers A(r) :=

{t= 1, · · · , T : r0t (n)≡ 0 for all n}. First, we note that under an NA-partition policy r, the platform earns

an expected revenue of pu0 for customer t ∈N (r) and an optimal expected revenue of pF (`rt ) for customer

t ∈ A(r). Therefore, the determination of the platform’s optimal NA-partition policy reduces to the deter-

mination of the neutral and affirmative customers, i.e.,

p max
N(r),A(r)

∑
t∈N(r)

u0 +
∑
t∈A(r)

F (`rt ). (C.26)

Thus, to establish (17), it suffices to show that an NA-partition policy r with t1 ∈ A(r) and t2 ∈ N (r)

for some τ◦ ≤ t1 < t2 ≤ T yields less revenue than the modified NA-partition policy, r̃, where (i) A(r̃) ≡
A(r)\{t1}∪{t2} and (ii) N (r̃)≡N (r)∪{t1}\{t2}. To that end, we utilize the platform’s objective function

representation in (C.26), such that∑
t∈N(r̃)

u0 +
∑
t∈A(r̃)

F (`r̃t ) =
∑

t∈N(r̃)

u0 +
∑

t<t1,t∈A(r̃)

F (`r̃t ) +
∑

t∈(t1,t2),t∈A(r̃)

F (`r̃t ) +F (`r̃t2) +
∑

t>t2,t∈A(r̃)

F (`r̃t )

=
∑

t∈N(r)

u0 +
∑

t<t1,t∈A(r)

F (`rt ) +
∑

t∈(t1,t2),t∈A(r̃)

F (`r̃t )︸ ︷︷ ︸∑
t∈(t1,t2),t∈A(r) F (`rt+1)

+ F (`r̃t2)︸ ︷︷ ︸
F(`rt1+

∑
t 1[t∈(t1,t2),t∈N(r)])

+
∑

t>t2,t∈A(r)

F (`rt )

≥
∑

t∈N(r)

u0 +
∑

t<t1,t∈A(r)

F (`rt ) +F (`rt1) +
∑

t∈(t1,t2),t∈A(r)

F (`rt ) +
∑

t>t2,t∈A(r)

F (`rt )

=
∑

t∈N(r)

u0 +
∑
t∈A(r)

F (`rt ),

where the second equality follows by (i),(ii) and the fact that
∑

t∈[t1,t2] 1[t ∈ N (r̃)] =
∑

t∈[t1,t2] 1[t ∈ N (r)],

and the inequality follows by the non-decreasing property of F (s) in s by Proposition 8. It is straightforward

to see (ICr
1) and (ICr

−1) are satisfied with r̃ as well, since τ◦ ≤min A(r)≤min A(r̃) by (i),(ii) and the fact

that r is a feasible NA-partition policy. �

Proposition C.1 (Full-disclosure policy). The platform’s expected revenue under the full-disclosure

policy is given by

πFD = p



u0(Tu1+1−u0)−[u0(1−u1)]
T
2 [T+Tu2

0(u1−1)+2u0u1(u0−1)]
1−u0(1−u1)

+
2u0(1−u0)

[
(1−u1)

[
u0−[u0(1−u1)]

T+2
2

]
−u1

]
[1−u0(1−u1)]2

, for v0 ∈ [v∗, p) and even T ,

u0(T+u0−1)+u0[(1−u0)u−1]
T
2 [1−u0(T+1)−(T+2)(1−u0)(1−u−1)]

1−(1−u0)u−1

+
2u0(1−u0)

[
u−1

[
[(1−u0)u−1]

T+2
2 −1+u0

]
+1−u−1

]
[1−(1−u0)u−1]2

, for v0 ∈ [p, v∗∗) and even T ,

u0(Tu1+1−u0)−[u0(1−u1)]
T+1

2

[
(T+2)u0(1−u0)+[u0(T+1)−1] u1

1−u1

]
1−u0(1−u1)

+
2u0(1−u0)

[
1−[u0(1−u1)]

T+1
2

]
[u0(1−u1)−u1]

[1−u0(1−u1)]2
, for v0 ∈ [v∗, p) and odd T ,

u0(T+u0−1)+u0[(1−u0)u−1]
T+1

2

[
1−u0(T+2)−(T+1)

1−u−1
u−1

]
1−(1−u0)u−1

+
2u0(1−u0)

[
1−[(1−u0)u−1]

T+1
2

]
[1−u−1−(1−u0)u−1]

[1−(1−u0)u−1]2
, for v0 ∈ [p, v∗∗) and odd T .

(C.27)
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In particular, πFD can have discontinuity in v0 or p only at v0 = p.

Proof of Proposition C.1. We first establish the following two claims C.3 and C.4.

Claim C.3. The full-disclosure policy induces the same purchase decisions from all customers and the

same expected revenue for the platform as the following recommendation policy:

(r1t (n), r0t (n), r−1t (n)) =

 (1,0,0), if n≥ n+,
(0,1,0), if n∈ (n−, n+),
(0,0,1), if n≤ n−,

for all t∈ {1,2, ..., T}, (C.28)

where n+ := min
n∈Z
{n : vn ≥ v∗∗} and n− := max

n∈Z
{n : vn < v

∗} . Let N(Ht) be the net purchase position up to time

t under the recommendation policy in (C.28), and denote τ+ := min{t= 1, · · · , T :N(Ht+1)≥ n+} and τ− :=

min{t= 1, · · · , T :N(Ht+1)≤ n−}. Then, the platform’s expected revenue under the full-disclosure policy is

given by

πFD := p

T∑
t=1

{
u0t
(
P[τ+ = t] +P[τ− = t]

)
+ (T − t)P[τ+ = t]

}
. (C.29)

Proof of Claim C.3. Let
(
σ̃, H̃

)
denote the full-disclosure policy, whereby the message space H̃ consists

of the platform’s proprietary history H̃t. Define mapping ϕ : H̃→M= {1,0,−1} as

ϕ(H̃t) =


1, if E[V |H̃t, σ̃]≥ v∗∗,
0, if E[V |H̃t, σ̃]∈ [v∗, v∗∗),

−1, if E[V |H̃t, σ̃]< v∗,

(C.30)

and denote γ(H̃t) := {(ϕ(H̃s), as) : s < t}. Further define the recommendation policy (σ,M) to be

σ (m |Ht) =

∑
γ(H̃t)=Ht,ϕ(H̃t)=m

σ̃
(
H̃t

∣∣∣ H̃t

)
P
[
H̃t

∣∣∣ σ̃]
∑

γ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃] =

∑
γ(H̃t)=Ht,ϕ(H̃t)=m

P
[
H̃t

∣∣∣ σ̃]
∑

γ(H̃t)=Ht

P
[
H̃t

∣∣∣ σ̃] , (C.31)

for any m∈M and Ht = {(ms, as) :ms ∈M, as ∈ {−1,1}, s < t} . Then, (C.30) immediately implies

(σ (m= 1 |Ht) , σ (m= 0 |Ht) , σ (m=−1 |Ht)) =


(1,0,0), if E[V |γ(H̃t) =Ht, σ̃]≥ v∗∗,
(0,1,0), if E[V |γ(H̃t) =Ht, σ̃]∈ [v∗, v∗∗),

(0,0,1), if E[V |γ(H̃t) =Ht, σ̃]< v∗.

Following similar argument as in the proof of Proposition 2, we have full-disclosure policy σ̃ and σ induce

the same purchase decisions from all customers and the same expected revenue for the platform. By (B.8)

and (B.9), the above equation can also be rewritten as

(σ (m= 1 |Ht) , σ (m= 0 |Ht) , σ (m=−1 |Ht)) =

 (1,0,0), if E[V |Ht, σ]≥ v∗∗,
(0,1,0), if E[V |Ht, σ]∈ [v∗, v∗∗),
(0,0,1), if E[V |Ht, σ]< v∗,

which, by utilizing the definitions of n−, n+ and Proposition 3, can be expressed as

(σ (m= 1 |Ht) , σ (m= 0 |Ht) , σ (m=−1 |Ht)) =

 (1,0,0), if N(Ht)≥ n+,
(0,1,0), if N(Ht)∈ (n−, n+),
(0,0,1), if N(Ht)≤ n−,

and hence, establishing the equivalence between recommendation policies σ and r given in (C.28).

By (4), customer t’s purchase decision under the recommendation policy r given in (C.28) follows

at =

 1, if N(Ht)≥ n+,
St, if N(Ht)∈ (n−, n+),
−1, if N(Ht)≤ n−,

(C.32)
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Thus, the net purchase position N(Ht)≥ n+ (resp., N(Ht)≤ n−) remains unchanged and generates a sale

with probability 1 (resp., 0) after t > τ+ (resp., t > τ−). Then, utilizing (3), we can denote the expected

revenue of a recommendation policy r given in (C.28) as follows

p

T∑
t=1

P
[
τ+ ∧ τ− = t

]{
P[at = 1

∣∣mt = 0, r]t+1[τ+ = t](T − t)
}

= p

T∑
t=1

{
(
P[τ+ = t] +P[τ− = t]

)
t
∑
n

P[St = 1|N(Ht) = n]︸ ︷︷ ︸
=qvn+(1−q)(1−vn)

P[N(Ht) = n|r]︸ ︷︷ ︸
zt(n)

+P[τ+ = t](T − t)}

= p

T∑
t=1

{
(
P[τ+ = t] +P[τ− = t]

)
t[q
∑
n

vnzt(n)︸ ︷︷ ︸
=v0 by
(C.10)

+(1− q)
∑
n

vn− vnzt(n))︸ ︷︷ ︸
=1−v0 by

(C.10) and (C.9)

] +P[τ+ = t](T − t)}.

Thus, (C.29) follows from u0 = qv0 + (1− q)(1− v0) definition given in Proposition 4. �

Claim C.4. The probabilities of positive and negative cascade occurring right after time t≥ 1 are given

by

P
[
τ+ = t

]
=

{
[(1−u0)(u−1)]

t−1
2 u01[t≡ 1(mod2)], for v0 ∈ [p, v∗∗),

(u0)
t
2 (1−u1)

t
2
−1u11[t≡ 0(mod2)], for v0 ∈ [v∗, p),

and (C.33)

P [τ− = t] =

{
(1−u0)

t
2 (u−1)

t
2
−1(1−u−1)1[t≡ 0(mod2)], for v0 ∈ [p, v∗∗),

[(u0)(1−u1)]
t−1
2 (1−u0)1[t≡ 1(mod2)], for v0 ∈ [v∗, p),

respectively. (C.34)

Proof of Claim C.4. We now derive (C.33) and (C.34) for the case of v0 ∈ [p, v∗∗). The case of v0 ∈ [v∗, p)

can be derived in a similar fashion. For v0 ∈ [p, v∗∗), in order for the net purchase position N(Ht) = n to stay

within (n−, n+) (i.e. n∈ (n−, n+), the first customer must not make the purchase (must receive a pessimistic

signal, which occurs with probability (1−u0) as N(H1) = 0) and the net purchase position gets updated to

N(H2) =−1; the second customer must make the purchase (must receive an optimistic signal, which occurs

with probability u−1) and the net purchase position gets updated to N(H3) = 0; the third customer must

not make the purchase (must receive a pessimistic signal, which occurs with probability (1− u0)) and the

net purchase position gets updated to N(H4) =−1. By induction, the net purchase position must alternate

between 0 and −1 in order for the net purchase position N(Ht) = n to stay within (n−, n+), i.e. N(Ht) = 0

for odd t and N(Ht) =−1 for even t. Therefore, in order for τ+ to be equal to t, a customer whose order

of arrival is an odd number must make the purchase - must receive an optimistic signal (which occurs with

probability u0 as N(Ht) would be 0). Similarly, in order for τ− to be equal to t, a customer whose order of

arrival is an even number must not make the purchase - must receive a pessimistic signal (which occurs with

probability 1−u−1 as N(Ht) would be −1). Hence, P [τ+ = t] and P [τ− = t] follows as in (C.33) and (C.34).

�

We now establish (C.27). We only demonstrate the case of v0 ∈ [p, v∗∗) and odd T ; all other cases follow

similar argument. Re-writing (C.29) we have

πFD = p

[
T∑
t=1

[T + t(u0− 1)]P[τ+ = t] +

T∑
t=1

u0tP[τ− = t]

]
. (C.35)
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Utilizing (C.33) we can represent the first term of (C.35) as

=[T + (u0− 1)]u0 + [T + 3(u0− 1)]u0(1−u0)(u−1) + · · ·+ [T + (T − 1)(u0− 1)]u0(1−u0)
T−1

2 (u−1)
T−1

2 .

Next, we obtain the following representation by multiplying the expression with 1− (1−u0)u−1

=[T + (u0− 1)]u0 + [T + 3(u0− 1)]u0(1−u0)(u−1) + · · ·+ [T + (T − 1)(u0− 1)]u0(1−u0)
T−1

2 (u−1)
T−1

2

−
[
[T + (u0− 1)]u0(1−u0)(u−1) + [T + 3(u0− 1)]u0(1−u0)2(u−1)2 + · · ·+ [T + (T − 1)(u0− 1)]u0(1−u0)

T+1
2 (u−1)

T+1
2

]
=[T + (u0− 1)]u0 + 2(u0− 1)u0

[
(1−u0)(u−1) + (1−u0)2(u−1)2 + · · ·+ (1−u0)

T−1
2 (u−1)

T−1
2

]
− [T + (T − 1)(u0− 1)]u0(1−u0)

T+1
2 (u−1)

T+1
2

=[T + (u0− 1)]u0 + 2(u0− 1)u0

[
(1−u0)(u−1) + (1−u0)2(u−1)2 + · · ·+ (1−u0)

T−1
2 (u−1)

T−1
2 + (1−u0)

T+1
2 (u−1)

T+1
2

]
− [T + (T + 1)(u0− 1)]u0(1−u0)

T+1
2 (u−1)

T+1
2

=[T + (u0− 1)]u0 + 2(u0− 1)u0(1−u0)(u−1)
[
1 + (1−u0)(u−1) + · · ·+ (1−u0)

T−1
2 (u−1)

T−1
2

]
− [T + (T + 1)(u0− 1)]u0(1−u0)

T+1
2 (u−1)

T+1
2

=[T + (u0− 1)]u0 +
2(u0− 1)u0

[
1− [(1−u0)(u−1)]

T+1
2

]
1− (1−u0)u−1

− [T + (T + 1)(u0− 1)]u0(1−u0)
T+1

2 (u−1)
T+1

2 ,

where the last equality follows from the sum of geometric series formula. Then, we divide the expression

back again by 1− (1−u0)u−1 to get

=
[T + (u0− 1)]u0− [T + (T + 1)(u0− 1)]u0(1−u0)

T+1
2 (u−1)

T+1
2

1− (1−u0)u−1
+

2(u0− 1)u0

[
1− [(1−u0)(u−1)]

T+1
2

]
[1− (1−u0)u−1]2

.

By similar analysis, second term of (C.35) can be represented as

=− (T + 1)u0(1−u−1)(u−1)−1 [(1−u0)u−1]
T+1

2

1− (1−u0)u−1
+

2u0(1−u−1)(1−u0)
[
1− [(1−u0)(u−1)]

T+1
2

]
[1− (1−u0)u−1]2

.

Combining the above-derived representations of first and second term of (C.35) and a few simple steps of

algebra, we reach at (C.27). �

Appendix D: Additional Figures and Detailed Numerical Results
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Figure D.1 Distribution ζ(s, ·) (for v0 = .55 and p= q= .7).

Figure D.2 Time-locked sales campaign example from Groupon.com.
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Figure D.3 Time-locked sales campaign example from Amazon.com.

Figure D.4 Time-locked sales campaign example from Woot.com.
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Cast Iron Skillet Set (3-Pc.)

Food-Free Jamboree Gift Basket

Brondell Luxury Bidet Attachment

Plus Size Crossbody Bag

Acer Chromebook 15.6” Laptop

Mesh Net Screen Door

Bed Pillows (4-Pack)

Simplify Over-the-Door Shoe Rack

Smooth Groom Beard Care Set

K-Cup Coffee Pod Storage Drawer

Popcorn (12-24- or 40-Pack)

Replacement Band for Fitbit

Faux Pearl Band for Apple Watch

Ultra-Plush Cotton Dog Hoodie

Seneca Collection Slipcover

12:30AM · · · 8:30AM · · · 3:30PM · · · 11:30PM

Neutral Customers Affirmative Customers

Figure D.5 Groupon daily deals on 4/8/19. Data collected in 30 minute intervals for 15 products. Groupon

revealed no information or showed up-to-date count of visits to the product webpage during blue time stamps,

and then switch to highlight the message “Selling Fast!” during red time stamps.
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(a) Benchmark with no-disclosure policy.
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(b) Benchmark with full-disclosure policy.

v0 = .25 v0 = .55 v0 = .85

Figure D.6 Relative revenue performance of optimal policy π? against no-disclosure policy πND and

full-disclosure policy πFD (for q= .7 and T = 100), plotted for the range of p such that v0 ∈ [v∗, v∗∗) with the lower

price limit corresponding to v0 = v∗∗ and the upper price limit corresponding to v0 = v∗.
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Table D.3 Data used in Figure D.6.
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