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Abstract

We study team production with privately-informed agents and relational con-

tracting between them. The team faces a joint moral-hazard and information-

sharing problem. When private information is about the output technology —not

the agents’effort costs —the first-best is achieved by means of a canonical “surplus-

sharing”arrangement: a subset of players receive output shares and pay performance

bonuses to their peers in exact proportion to these shares. This arrangement, of

which a single owner/manager is a special case, is both necessary and suffi cient for

agents to internalize all externalities. When instead private information is about

the agents’effort costs, the first-best can only be achieved with a budget breaker.

To derive applications, we impose minimal additional structure. When players’

efforts vary independently from each other across different states (e.g. it is possible

for a player’s effort not to be needed while the other team members exert a lot of

effort), then having a single owner/manager is effi cient. When instead the optimal

efforts of at least some subset of the team are in sync with the overall effort of the

team (e.g. several players in team are essential), then a partnership, with profits

divided among this subset, is effi cient.
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1 Introduction

To be successful, organizations must achieve two goals: motivating agents and

aggregating their private information. A key obstacle is that dispersed infor-

mation is crucial to determining what must be done, who should do it, and

also perhaps how it should be done. While the literature has advanced in

solving the motivation and information aggregation problems separately, little

progress has been made in determining how organizations can deal with the

two problems together.

For instance, consider a team of specialized doctors working on the di-

agnosis and treatment of a patient. The doctors may be well motivated to

cure the patient, but this may be useless if they are not performing the right

tests or using the right treatments. The choice of the next test or the most

reasonable treatment might require pooling information or judgements across

the specialists. The hematologist might be able to reasonably rule out certain

basic neurological conditions as suffi ciently unlikely to justify bringing in a

neurologist, but since the hematologist does not absorb any of the costs of

neurological testing, she may lack the incentives to share this information. Al-

ternatively, a surgeon may derive prestige from certain invasive procedures and

therefore may refrain from mentioning alternative options. As these examples

suggest, there can be important and complicated dependencies between how

incentive schemes create incentives for actions and how they create incentives

for information sharing.

In a very different industry, professional cycling, similar organizational

challenges emerge. In races like the Tour de France, 9-man teams may par-

ticipate in different contests: the race for the yellow-jersey each day, the race

for the overall title after nearly a month of racing, stage wins, the climbers

jerseys, or the sprinters jersey. Each day the team must decide how to focus

the efforts of each rider for that day. Moreover, the fitness and health of riders

varies tremendously over three weeks of racing with each rider possessing sig-

nificant private information about their performance potential for that stage.

Famed sprinter Mark Cavendish (2013) writes about the perils of having the

team devote substantial effort in support of a rider that is just not firing on

all cylinders that day. In particular, he laments the decision of management

to focus riders on supporting a leader with aspirations to win the overall title
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at the expense of supporting Cavendish’s efforts to win sprints when, on that

day, the overall contender was under the weather, and Cavendish was strong.

Economic theory has taught us that when only the moral-hazard problem is

present, two simple solutions are available. First, an external “budget breaker”

may use group rewards and punishments (Holmstrom, 1982). Secondly, the

logic of the folk theorem tells us that repeated play achieves the first best

by means of appropriate self-enforcing bonuses. This discussion leaves open

two questions: can the moral-hazard and information-aggregation problems be

solved simultaneously, and if so, what forms will the resulting organizations

take?

In this paper, to answer both questions, we consider a model of repeated

team production in which players possess private information. Effi ciency re-

quires aggregating this information and creating incentives for optimal state-

contingent levels of effort in each period. We show that the nature of private

information is key in two ways. First, it determines whether or not the first

best can be obtained without a budget breaker. Second, when effi ciency is

possible, it determines the structure of optimal contracts (organizations). The

need to solve both the moral-hazard and information-sharing problems places

tight demands. As a result, we obtain tight characterizations of the effi cient

organizational structures. Moreover, the model has a rich set of primitives,

namely the structure of information dispersion, and therefore provides insights

into how optimal organizational design depends on the nature of the underly-

ing informational environment.

In the case in which private information is about how efforts determine out-

put the results are positive: the first best can be achieved. Effi ciency requires

the use of a canonical “surplus sharing”arrangement. In such an arrangement,

a subset of players receive output shares and pay performance bonuses to their

peers in exact proportion to these shares. This arrangement, of which a single

owner/manager is a special case, is necessary for agents to internalize all ex-

ternalities. In particular, the performance bonuses force agents to internalize

the externalities of their reports on the effort of their peers. For example, if

the hematologist’s report causes additional effort by the neurologist, then the

hematologist must internalizes the cost of this additional effort; if the con-

tender for the yellow jersey stands to gain prestige and advertisement revenue
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from a good showing, he must also feel the costs he imposes on team mates

that support his efforts.

Conversely, we show that provided there is suffi cient relational capital (the

value of the relationship is high) any surplus-sharing arrangement can be made

to support first-best efforts. Although a large range of profit shares can support

first-best efforts, different allocations of shares differ in how much relational

capital is needed.

The effi cient allocation of shares —i.e. the allocation that requires the least

relational capital —depends on the fundamentals of the production technology.

In settings in which players’efforts vary independently from each other across

different states (e.g. it is possible for a player’s effort not to be needed while the

other team members exert a lot of effort), then having a single owner/manager

is effi cient. When instead the optimal efforts of at least some subset of the

team are in sync with the overall effort of the team (e.g. several players in

the team are essential), then a partnership, with profits divided among this

subset, is effi cient.

The intuition begins with the following observation. The self-enforcing

bonus that each agent must pay involves compensating his peers for a frac-

tion of their effort costs —in direct proportion to the agent’s profit shares —

and, simultaneously, receiving compensation for a fraction of his own cost —

in proportion to his peers’profit shares. As a result, each agent’s reneging

temptation is highest in states in which he exerts low effort while at the same

time his peers work hard.

Thus, when the efforts of a subset of players are in sync with the overall

effort of the team, the total reneging temptation is minimized by sharing own-

ership —and therefore pooling bonus payments —between them: by doing so,

since effort costs tend to cancel out, no single agent is ever called upon to make

a large payment. When instead the efforts of all players vary independently

from each other, bonus payments can no longer be pooled. In this case, it is

best to assign all ownership to the player who exerts the highest level of effort

across states: by doing so, the team at least avoids having to pay a large bonus

to this player.

Throughout most of our analysis, we focus on fairly simple arrangements

in which output shares (which are externally enforced) do not depend on the
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realized level of output, or on the agent’s internal communications. If there are

large gains from added complexity, one might expect more elaborate arrange-

ments to emerge. To illustrate the potential size of these gains, we show

that suffi ciently complex court-enforced contracts, provided they can be en-

forced, achieve the first best without any need for self-enforcing bonuses. These

schemes involve a complex selection of shares off the equilibrium path; but,

importantly, on the equilibrium path, they look just like the simpler systems

of fixed shares.

Finally, we consider settings in which private information is about the

players’individual effort costs. We show that, in this case, relational contracts

alone do not lead to first best. As a result, a Holmstrom-like result obtains:

only through a budget breaker can the team achieve effi ciency. In particular,

aligning incentives requires that each team member becomes a full residual

claimant of surplus. Since there is only one surplus to distribute among team

members, a budget breaker is needed. In other words, when the budget is

balanced, it is not possible to create the correct incentives for information

sharing without simultaneously damaging effort incentives.

2 Related Literature

Although the problem of coordination and motivation has long been considered

the crucial problem of organization (at least since Arrow, 1974 masterful treat-

ment), the literature studying these issues has branched out into two separate

fields. One area, the principal agent literature, has been concerned (following

Holmstrom, 1979) with the problem of motivating agents to exert unobservable

effort. When multiple tasks and agents are involved, this literature has em-

phasized the need for low-powered incentives in contexts in which coordination

matters (Holmstrom and Milgrom, 1991, 1994, Holmstrom, 1999).

A separate literature has been concerned with coordination problems due to

bounded rationality and limited information, absent incentive conflicts. For

example, Cremer (1980) and Vayanos (2002) study the optimal grouping of

subunits into units in the presence of interdependencies; Dessein and Santos

(2006) study the trade-off between ex-ante coordination, through rules, and

ex-post coordination, through communication; Cremer, Garicano, and Prat
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(2007) study how organizational codes allow for improve coordination, and

how they place limits on firm scope.

More recently, some authors have studied problems that involve both co-

ordination and incentive problems. Segal (1999) studies agents who exert

externalities on each other through their participation decisions. Bernstein

and Winter (2012), in a complete information setting, show that a subset of

the players must be subsided to ensure that they invest even if no one outside

the set does. Given that these early adopters adopt, the rest of the players

then proceed to invest, and can even be taxed.

Dessein et al. (2010) study a model where optimal contracts must ensure

both effort incentives and coordination among agents. They show that optimal

incentives leads to biased decision making, as agents must (optimally) be made

to care about their own units profits. Edmans et al. (2012) study a model

in which effort by one agent reduces the cost of effort by other agents. As

a consequence it is optimal to “over incentivize”synergistic agents. Sakovics

and Steiner (2011) study a coordination problem in global game setting where

agents have asymmetric information. Their objective is to study towards whom

should taxes and subsidies be directed. Subsidies to encourage adoption must

be directed to the agent on whom others impose less externalities, who relies

less on others adopting the new technology .

Like these more recent papers, in our paper agents must both be coordi-

nated and motivated. Like some of those papers (e.g. Dessein et al., 2011)

information about the right combination of efforts is dispersed, and in the

hands of the agents. Unlike in any of them, relational contracts are allowed,

as agents work together repeatedly. Moreover our model is broader than the

ones in those papers. While we sharply expand the range of the contracts

allowed, the problem is surprisingly tractable.1

This paper contributes to the growing literature on relational contracts

1A less closely related recent literature has studied the problem of pricing externalities
on a network. In these papers, consumers are situated on a graph, and exert externalities
on each other: for instance, one consumer’s adoption decision increases the likelihood that
another consumer will adopt. A monopolist must determine the prices charged to max-
imize profits, internalizing adoption externalities. For instance, in some papers, such as
Candogan et al. (2012), Bloch and Querou (2013) and Fainmesser and Galeotti (2015), this
pattern of interactions is specified as a deterministic graph. While these papers worry about
interactions and incentives, there is no unobservable effort nor relational contracting.
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—a few examples include Bull, 1987, MacLeod and Malcomson, 1989, 1998,

MacLeod, 2003, Baker, Gibbons, and Murphy, 1994, Levin, 2003, Fuchs, 2007,

Halac, 2012). This literature focuses on settings with an exogenous principal

who is not directly involved in production. In our model, in contrast, all agents

to contribute to output, share the team’s profits, and pay each other’s bonuses.

As result, the model addresses questions of optimal organizational design.2

In this literature, Rayo (2007) also studies a team moral-hazard problem.

He is interested in how the ability to monitor team members impacts the

optimal allocation of profit shares. In contrast, we are interest resolving a

joint information-sharing and incentive problem. This richer problem allows

us to tightly characterize the team’s optimal organizational structure.

Finally, Skrzypacz and Toikka (2015) study the problem of inducing an

optimal level of trade, when parties are privately informed, in a dynamic en-

vironment. There are also interested in understanding when the first best can

be achieved. The difference between the two approaches follows from the un-

derlying difference in the two settings: in their case, a buyer-seller relationship

in which players have exogenously assigned roles; in our case, a multi-sided

effort-provision problem in which the role of each player depends on her en-

dogenously chosen profit shares.

3 Model

Consider a team of N players who live forever. Players are risk neutral and

discount future payoffs using interest rate r. In each period, output is given

by y = f(e, θ), where e = (e1, ..., eN) is a profile of effort choices and θ =

(θ1, ..., θN) is a profile of private types (only player i observes θi). We refer

to θ as the state. Player i’s cost of effort is c(ei, θi). (Throughout, to avoid

clutter, we omit time subscripts.) Output is observed by the courts; efforts

are observed only inside the team.

We assume that ei ∈ [0, e] and θi ∈ [0, 1]. We also make standard assump-
tions on the output technology and cost functions: f and c are continuously-

2Levin (2003), MacLeod (2003), Fuchs (2007) or Halac (2012) consider prncipal-agent
problems with asymmetric information. The first three papers have private information
about the outcome variable, while Halac (2012) has persistent private information about
the players’outside payoffs.
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differentiable in θ and f is increasing in e, θ. In addition, θ raises the marginal

productivity of e, namely, for all e′ > e the difference f(e′, θ) − f(e, θ) is

(weakly) increasing in θ. The state θ is drawn, at the beginning of each pe-

riod, from a c.d.f. H(·) that has full support (and is otherwise unrestricted).
Denote the team’s overall surplus by

S(e, θ) = f(e, θ)−
∑
i

c (ei, θi) .

Denote the first-best effort choices, for any given θ, by

e∗(θ) = argmax
e

S(e, θ).

(Which we assume exist and are unique.) Note that the increasing-differences

assumption implies that e∗(θ) is (weakly) increasing in θ.

Throughout, we focus on first-best arrangements that induce players to

select e∗(θ) for all states.

Participation in the team is voluntary. At the beginning of each period,

players can exit the relationship an obtain a per-period outside option vi. We

assume that S = infθ S(e
∗(θ), θ) ≥

∑
i vi, which grantees that, provided the

team operates effi ciently, it provides a surplus large enough to simultaneously

cover all of the players’outside options.

The team’s goal is to select the first-best effort profile e∗ (θ) period by

period while also guaranteeing that each player wishes to participate in the

team.

We impose a minimal level of structure on the team’s interactions. During

each period, after players learn their private types, we have:

1. A reporting stage in which players simultaneously send public messages

mi ∈Mi.

2. An effort-provision stage in which players simultaneously select efforts

ei.

3. A money transfer stage in which players execute formal contracts —de-

scribed below —and make self-enforcing money transfers to each other.
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Per the Revelation Principle, we restrict attention to direct-revelation mech-

anisms in which players are asked to report their types (Mi = [0, 1]) and, we

focus on equilibria in which they do so truthfully (mi = θi for all θi).

In studying the reporting incentives it is convenient to define payoffs that

anticipate equilibrium play at the effort and transfer stages. Let Vi (mi; θ)

denote player i’s payoff in period t when she reports type mi, the true state

is θ, and her peers report truthfully and all players follow all prescribed ac-

tions subsequently. It is convenient to let Vi (θ) = Vi (θi; θ) denote player i’s

equilibrium payoff.

Contracts

The team has two types of contracts at its disposal. First, players enter

into a court-enforced contract that specifies, for each player, a share of output

αi and a wage wi. Second, players promise self-enforcing money transfers ti
to each other, as a function of the reports θ and the chosen efforts e (both of

which are observed by all members of the team).

For the time being, we focus on court-enforced contracts with a simple

(empirically-relevant) form: the shares αi and wages wi are constants (i.e.

they are independent of the realization of output and the players reports).

Shares are constrained to be non-negative (which prevents budget-breaking

schemes) and must add up to one; wages must add up to zero, as teammembers

pay these wages to each other. (In Section ??, we consider more complex

arrangements.)

Without loss of generality, the self-enforcing money transfers ti are only

paid when players follow their prescribed efforts. Namely,

ti (e, θ) =

{
bi (θ) if e = e∗ (θ) ,

0 otherwise.

for some function bi (θ) . We refer to bi (θ) as the bonus paid by player i (with

a negative bonus meaning that player i gets paid).

Player i’s payoff is

αiy + wi︸ ︷︷ ︸
court enforced

− bi (θ)︸ ︷︷ ︸
self enforced

− c (ei, θ) .
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A relational contract, or more compactly, a contract, is a court-enforced

contract together with a set of self-enforcing bonuses. Following Levin (2003)

we focus without loss of generality on stationary agreements in which this

contract remains constant across time.

Solution concept

It is standard in the study of contracting with private information to appeal

to Bayesian Nash equilibrium or Bayesian mechanism design. This approach,

however, has two important drawbacks. First, as observed by Wilson (1985),

Bayesian Nash mechanism design typically imposes major requirements on

the information possessed by the designer(s) of the institution. Second, these

equilibria may not be robust to perturbations of what agents believe about

each other (Bergemann and Morris 2005). To avoid these pitfalls, we focus on

the more demanding problem of designing mechanisms in which truth telling

is a mutual best response regardless of what players believe about their peers.

(Formally, we focus on the problem of (partial) ex-post implementation of

the first best). This concept requires that, given that all her peer’s report

truthfully, each player i finds reporting her type truthfully to be a best response

to every profile of types her peers may have.3

Preliminaries

The team faces the following constraints:

1. Each player must be willing to report her type truthfully, regardless of

her type and regardless of the types of her peers:

Vi (θi; θ) ≥ Vi (mi; θ) for all θ,mi. (IC)

2. Given truthful reporting, players must be willing to exert first-best ef-

forts. In other words, selection of e∗i (θ) for each i a mutual best response

3This condition implies that truth-telling is optimal for any possible belief that i may
hold about θ−i and is thus stronger than partial robust implementation. Accordingly, the
concept is robust to information leakage or heterogeneous beliefs about the underlying type
profile. We do not focus on the related question of full ex post implementation (Bergemann
and Morris 2009).
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at every θ, taking the effect of effort on transfers and future play into

consideration.4

3. Each player must be willing to honor the self-enforcing transfer, regard-

less of the state:

sup
θ

bi (θ)︸ ︷︷ ︸
i’s maximum reneging temptation

≤ 1

r
[EVi (θ)− vi]︸ ︷︷ ︸ .

i’s relational capital

(DE)

(In addition, the budget must be balanced:
∑

i bi (θ) = 0 for all θ.)

We say that a relational contract achieves the first-best if it satisfies all

constraints for a finite level of relational capital.

For the environments we consider below, the effort constraint turns out to

be slack. For ease of exposition, we begin by ignoring this constraint. Then,

in the Appendix, we show that doing so is in fact valid.

As we shall see, a theory of incentives —and organizational form —emerges

from the interaction of (IC) and (DE).

4 Productivity is private information

Here we study the case in which the state θ affects the output function f (e, θ)

(but not the players’effort costs). This setting allows players to be privately

informed, for example, about the demand for the team’s product, about the

marginal value of each other’s efforts, or about the degree to which their efforts

complement each other. In this section, we normalize c(ei) = ei.

We begin by showing that there is a unique family of relational contracts

—which we call “surplus-sharing”agreements —that implement the first best

(each one requiring a potentially different level of relational capital).

A surplus-sharing arrangement is a contract in which each player’s payoff

Vi (θ) has the following canonical form:

Vi (θ) = αiS (θ) +Wi (θ−i) for all i,

4Joint deviations at the reporting and effort exertion stages must also be deterred This
joint constraint, however, is always slack.
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where αi ∈ [0, 1] is the player’s court-enforced output share and Wi (θ−i) is

independent of player i’s type. In other words, other than the wage (comprised

of the court enforced wi and possibly transfers), player i receives a share of

(net) surplus equal to her share of (gross) output.5

Interpretation: The team has a set of owners (according to shares α). These

owners promise each player in the team (owners included) a self-enforcing

bonus equal to her effort cost. When output arrives, owners first pay all

promised bonuses (in exact proportion to their output shares) and then split

the output that remains. (In addition, players may transfer fixed payments

Wi − wi amongst themselves.)

Theorem 1 If a relational contract achieves the first best, then it is a surplus-
sharing agreement. Conversely, for any profile of shares α there exists a

surplus-sharing agreement with shares α that achieves the first best (for a finite

level of relational capital).

Proof. We first show that every first-best contract must be a surplus-sharing
one. Notice that, for any given contract,

Vi (θ) = αif (e
∗ (m) , θ) + wi︸ ︷︷ ︸

court-enforced payment

− bi (m) − e∗i (m) for m = θ.

We now use the Envelope Theorem twice:6

1. Truth telling requires that

Vi (θ) =

∫ θi

0

αi
∂

∂θi
f (e∗ (z, θ−i) , z, θ−i) dz + Vi (0, θ−i)

(where z is a dummy variable that takes the place of θi). The integrand

is the direct derivative of the player’s payoffwith respect to his true type

θi —which, crucially, affects her payoff only through its direct effect on

output.

5Since the shares αi add up to one, the wages Wi (θ−i) add up to zero.
6The Envelope Theorem we use is Theorem 2 of Milgrom and Segal (2002). We must

verify two conditions to use this theorem (absolute continuity and a bounding condition): By
assumption f(e, θ) is continuously differentiable in θ and is therefore absolutely continuos.
Second, the function, fθi(e, θ) of e is bounded above by fθi(ē, θ) for each θ.
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2. The fact the surplus is maximized for all θ requires that

S (θ) =

∫ θi

0

∂

∂θi
f (e∗ (z, θ−i) , z, θ−i) dz + S (0, θ−i)

The integrand is the direct derivative of surplus with respect to θi —

which, crucially, affects surplus only through its direct effect on output.

By combining these two expressions we obtain Vi (θ) = Vi (0, θ−i) + αiS (θ)

− αiS (0, θ−i). Namely, each agent captures a constant plus share αi of

her type’s contribution to team surplus. Therefore, by setting Wi (θ−i) =

Vi (0, θ−i)− αiS (0, θ−i), we obtain the desired result.

Conversely, fix α. We may construct a surplus-sharing arrangement that

achieves the first best as follows. For all i, setWi(θ) = wi such that
∑

iwi = 0

and αiES (θ)+wi−vi > 0 (which is possible because ES (θ) >
∑

i vi).
7 On the

one hand, (IC) follows from the fact that each player’s payoff is proportional

to the team’s surplus. On the other hand, (DE) follows from the fact that

player i’s bonus is

bi (θ) = αi
∑
j

e∗j (θ)− e∗i (θ) .

This bonus is bounded above by αi
∑

j 6=i ej. As a result, a finite level of rela-

tional capital suffi ces to overcome the player’s maximum reneging temptation.

This Theorem is best understood by describing the players’bonuses. Con-

sider first a teamwith two players. Under any given surplus-sharing agreement,

player must pay a bonus

b1 (θ) = α1 · e∗2 (θ)︸ ︷︷ ︸
2’s externality on 1

− α2 · e∗1 (θ)︸ ︷︷ ︸
1’s externality on 2

(and player 2’s bonus is symmetric). In other words, player 1 must pay for

player 2’s effort cost in proportion to 1’s profit share and, simultaneously,

player 2 must pay for player 1’s effort cost in proportion to 2’s profit share.

(And, to minimize the reneging temptation, only the resulting net payment

changes hands). This arrangement guarantees that players internalize all ex-

7In this case, bi (θ) = αi
∑
j e

∗
j (θ)− e∗i (θ) and therefore supθ bi (θ) ≥ 0.
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ternalities they cause on each other.

For example, when player 1 is the sole owner (α1 = 1), she must pay 100% of

player 2’s effort cost, while receiving no payment in return. This arrangement

is needed so that player 1 does not overstate (through her report) the level

of effort that player 2 must exert and, at the same time, player 2 does not

understate the level of effort that she herself must exert. (Player 1, being the

full residual claimant of output, internalizes all benefit of her own effort, and

therefore requires no bonus to work hard). In addition player 1 must pay 2 a

constant to offset the outside option v2.

When the team has N players, the non constant part of bonuses are a

straightforward generalization of the bonus above:

b1 (θ) = α1
∑
i 6=1

e∗1 (θ)︸ ︷︷ ︸
peers’externality on 1

− (1− α1)e∗1 (θ)︸ ︷︷ ︸
1’s externality on her peers

(and her peer’s bonuses are symmetric.) This arrangement guarantees that

players internalize the multi-sided externalities they cause on each other.

4.1 Effi cient Ownership Structure

Now that we have established that the first-best can be achieved (provided

the team has suffi cient relational capital) we turn to the problem of finding

the effi cient ownership structure, defined as the profile of output shares α,

and associate bonus payments, that minimize the relational capital needed to

implement the first best.

Recall that the players’combined reneging temptation is

∑
i

sup
θ
bi (θ) =

∑
i

sup
θ

[
αi
∑
j

e∗j (θ)− e∗i (θ)
]

(where, crucially, the sup is taken separately player by player). The effi cient
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profile α solves the problem of minimizing this combined reneging temptation:

min
α

∑
i

sup
θ

[
αi
∑
j

e∗j (θ)− e∗i (θ)
]

(1)

s.t.

α ≥ 0 and
∑
i

αi = 1.

Throughout, to avoid knife-edge cases in which more than one arrangement

is effi cient, we assume that the players’effort ranges [0, ei] are generic in the

sense that ei differs across players.

We are ready to characterize the effi cient ownership structure for specific

environments. Below, we consider two classes of environments of interest.

These are described, respectively, by Conditions 1 and 2.

Condition 1 (Full effort range.) An environment exhibits full effort range
if, for any given player i, there exists a state θ in which player i exerts

zero effort and all of her peers exert maximum effort —namely e∗i (θ) = 0

and e∗−i (θ) = e−i.

This condition implies that no single player is needed in all states and

importantly requires that in some state in which everyone other than i is

working maximally, i is not needed.

Proposition 1 Under Condition 1 (full effort range) the effi cient arrange-
ment is a single owner/manager who receives all profit shares and pays all

bonuses of her peers.

Proof. See Appendix.
Intuitively, for any surplus-sharing arrangement the worst case scenario —

in terms of bonus payments — for player i is a state in which she exerts no

effort and her peers exert maximum effort. In this case, player i’s reneging

temptation (i.e. the size of the bonus she must pay) is αi
∑

j 6=i ej. As a result,

the effi cient profile of shares α, which minimizes the players’combined reneging
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temptation, solves

min
α

∑
i

αi
∑
j 6=i

ej

s.t.

α ≥ 0 and
∑
i

αi = 1.

Since the reneging temptation of each player increases linearly with her share

αi, it is best to concentrate all shares in the hands of the player with the largest

effort range [0, ei], as this is also the player for whom the value of
∑

j 6=i ej is

smallest.

In other words, by concentrating all shares in the hand of one player, the

teams avoids having to pay a bonus to the player for whom this bonus would

have to be largest.

In what follows, we assume (without loss) that it is player 1 who has the

highest effort range e1 > ei or all i > 1.

Note. The condition under which Proposition 1 is derived is that no single
player is essential. However, all that is needed for this results is the weaker

condition that no single player other than player 1 is essential.

An alternative condition on the environments is:

Condition 2 (Joint efforts.) An environment exhibits joint efforts if there
is a subset of players M containing m ≥ 2 agents such that

∑
j∈M

sup
θ

[
1

m

∑
i

e∗i (θ)− e∗j (θ)
]
<
∑
i 6=1

ei.

This condition says that players j in the set M exert an effort that is not

too small when the total team effort
∑

i e
∗
i (θ) is high. The LHS is the rela-

tional capital needed for a surplus-sharing arrangement that splits ownership

between the agents in M and the RHS is the relational capital needed for an

arrangement where 1 is the owner.

Notice that this condition is quite week. For example, when there are two

players, it requires only that the distance between their two efforts |e∗1 (θ)− e∗2 (θ)|
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is no greater than the highest possible effort e2 of player 2. In other words,

player 2’s is at least somewhat important for the team, regardless of the state.

When there are more than two players, the condition is weaker still: it suf-

fices that there is a subset of players whose combined effort is not too small

whenever the team as a whole works hard.

Proposition 2 Under Condition 2 (joint efforts) the effi cient arrangement is
a partnership in which ownership is dispersed across a subset of players.

Proof. See Appendix.
The intuition behind this result is as follows. Suppose we have two players.

When shares are split 50-50, player 1 pays for 50% of player 2’s effort and vice

versa As a result, player 1 ’s maximum reneging temptation is

sup
θ

1

2
[e∗2 (θ)− e∗1 (θ)]

(and player’s 2’s maximum reneging temptation is symmetric). The smaller

the distance between the two efforts, the smaller this reneging temptation:

when both players work hard, none of them must pay a large bonus to the

other. When instead shares are concentrated in the hands of player 1, her

maximum reneging temptation is

sup
θ

e∗2 (θ) ,

which exposes the fact that player 1 must pay the full effort cost of player

2 without ever receiving money in return, for her own effort. It follows that

when players exerts similar efforts (regardless of their overall effort level),

shared ownership is best.

When we have more than two players the argument is very similar. Now,

for a partnership to be optimal, it suffi ces to find a subset of players such that

the effort of each one of these players is never two far away from the average

effort level of the team —namely, all players in this subset are essential to team

output.

Note. The above argument also tells us which players are the ideal owners
of the team: they are the subset of players who work hardest in those states
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in which the team as a whole works hard.

4.2 Complex mechanisms

The simple contracts described above, in which the output shares α are con-

stants, are satisfying for several reasons. First, they limit the diffi culties faced

by a court who wishes to enforce these payments. Second, they are immune to

players manipulating the exact time in which revenues are generated. Finally,

they provide incentives regardless of the team’s baseline level of output. That

being said, if there are large gains from added complexity, one might expect

more elaborate arrangements to emerge.

Here we show that suffi ciently complex court-enforced contracts, provided

they can be enforced, achieve the first best without any need for self-enforcing

bonuses. Moreover, these contracts are identical, on the path, to the surplus-

sharing agreements discussed above.

Consider the following family of court-enforced contracts, which we call

complex surplus-sharing. Select an arbitrary profile α of constant shares. Now,

define the following function of the players reports θ′ and realized output y:

σi (θ
′, y) = αi +

e∗i (θ
′)− αi

∑
j e
∗
j (θ

′)

y
.

Next, after players report θ′ and output y is realized, have the court dis-

tribute y according to shares σi (θ
′, y) and force have players to pay fixed wages

wi amongst themselves (with
∑

iwi = 0). As a result, when θ′ = θ, player i

receives a court-enforced payment equal to

σi (θ, y) · y + wi = αiS (θ) + wi.

Theorem 2 For any profile α, there exists a complex surplus-sharing agree-
ment that achieves the first best without any self-enforcing bonuses.

Proof. Fix α. For all i, divide output according to shares σi (θ, y) and set wi
such that

∑
iwi = 0 and αiES (θ) + wi − vi > 0 (which is possible because
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ES (θ) >
∑

i vi).
8 (IC) follows from the fact that each player’s payoff is

proportional to the team’s surplus and (DE) is met automatically because no

bonus payments are called for.

Notice that, on the path, these complex contracts are identical to the simple

contracts considered above. The only difference is that, instead of internalizing

externalities by adjusting the players’payments with self-enforcing bonuses,

these contracts adjust their payments directly. In other words, output shares

are fine-tuned so that the effect of a misreport on the output share mirrors the

effect of a misreport on the self-enforcing bonuses in the simple surplus-sharing

agreements. For example, when i’s report causes j to work a lot, i’s share of

output is reduced. As a result, the incentive to cause others to overwork is

negated.

5 Effort costs are private information

Here we assume that the state θ to affects the players’ effort costs c(ei, θi)

(but not the output function).9 Types may now capture, for example, private

opportunity costs.

We show that when the types of all players interact, in the sense that the

cross partial Sθ1...θN is nonzero, no relational contract (with a balanced budget)

achieves the first best.

Theorem 3 Suppose effort costs are private information and Sθ1...θN 6= 0.

Then, there is no mechanism that respects the teams’budget and implements

the first best.

Proof. Notice that, for any given contract,

Vi (θ) = αif (e
∗ (m)) + wi︸ ︷︷ ︸

court-enforced payment

− bi (m) − c (e∗i (m) , θi) for m = θ.

8Players with positive αi typically receive a negative wage and vice versa. We assume
that players have suffi cient liquidity to make these payments.

9Theorem 2 generalizes to the case in which θ affects f as well.
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We now use the Envelope Theorem twice:10

1. Truth telling requires that

Vi (θ) = −
∫ θi

0

∂

∂θi
c (e∗ (z, θ−i) , z) dz + Vi(0, θ−i)

(where z is a dummy variable that takes the place of θi). The integrand

is the direct derivative of the player’s payoffwith respect to his true type

θi —which, crucially, affects her payoff only through its direct effect on

cost.

2. The fact the surplus is maximized for all θ requires that

S (θ) = −
∫ θi

0

∂

∂θi
c (e∗ (z, θ−i) , z) dz + S(0, θ−i)

The integrand is the direct derivative of surplus with respect to θi —

which, crucially, affects surplus only through its direct effect on cost.

By combining these two expressions we obtain Vi (θ) = Vi(0, θ−i) + S (θ)

− S(0, θ−i). Namely, a constant of integration plus the contribution of θi to

surplus. It follows that∑
i

Vi (θ) = NS (θ) +
∑
i

[Vi(0, θ−i)− S(0, θ−i)] .

As a result, budget balance (namely,
∑
i

Vi (θ) = S (θ)) requires that

∑
i

[Vi(0, θ−i)− S(0, θ−i)] = − (N − 1)S (θ) for all θ.

Since ∂N

∂θ1...∂θN

∑
i

[Vi(0, θ−i)− S(0, θ−i)] = 0 (by construction) and ∂N

∂θ1...∂θN
S (θ) 6=

0 (by assumption) this equality cannot hold.

10The Envelope Theorem we use is Theorem 2 of Milgrom and Segal (2002). We must
verify two conditions to use this theorem (absolute continuity and a bounding condition): By
assumption c(ei, θi) is continuously differentiable in θ and is therefore absolutely continuos.
Second, the function, cθi(ei, θi) of ei is bounded above by cθi(ē, θ) for each θ.
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The proof of Theorem 3 shows that a necessary condition to achieve the

first-best is that each player’s payoff has the form

Vi (θ) = S (θ) +Wi (θ−i) .

Therefore, unlike a surplus-sharing agreement in which player i receives only

a fraction of surplus, each play must receive 100% of surplus. But since there

are N players, and only one actual surplus to divide among them, the team

lacks the necessary budget (i.e. is short N − 1 multiples of surplus).
The only remedy, therefore, is for the team to bring in a budget breaker.

6 Discussion

Our theory allows us to rationalize and understand some key features of a

wide range of contracts. Specifically, sharing contracts have been prevalent

for a long time in history. Consider, for instance, fishermen (Arrunada and

Gonzalez, 1997):

“Firstly, a small quantity of fish is distributed as compensation

in-kind among crewmembers. Gross revenue obtained from selling

the rest of the catch is then reduced by the commission paid to

the market (between 3.5 and 4.5%). Next to be paid are common

expenditures, which are collectively supported, such as food pro-

visions, Social Security charges, fishing tackle (nets, rods, lines,

etc.), bait, salt and ice. The shipowner finances these common

expenditures, recovering them only after the catch is sold. If the

value of the catch is lower than the expenditures, the difference is

accumulated and deducted from future catches.

At this time, a fixed compensation is also paid to the crew.

Fishermen thus receive a small wage coming directly from the catch

value, as do common expenditures before the main partition of net

revenue between capital and labor is made. This is not strictly

a fixed compensation since it is defined most commonly as a per-

centage of gross revenue or as a fixed amount per month whichever

is lower, and fishermen do not earn it if the catch is not valuable

21



enough to meet all the common expenditures. In practice, how-

ever, it can be considered as a fixed wage given that catches small

enough not to recover such expenditures are very rare and even in

this case payment of expenses might be postponed.

Once the common expenditures and this fixed compensation are

deducted, the resulting net revenue is divided into two parts, one

for the ship-owner (the “ship’s part”) and the other for the crew

(“the people’s part”).... “The 49% allotment received by the crew

is then allocated among crewmen according to a previously agreed

formula. Frequently, it is divided by the number of fishermen plus

1.5 (so that the value of one share is 0.49 [CV-SE] / [n+1.5], where

n is the total number of people in the boat, CV is the catch value

and SE the total shared expenditures). Every crewman earns one of

these shares except for the fishing skipper who receives two and the

coast skipper who takes one and a half. Traditionally, the sharing

is made openly, so that every crewman can monitor the prices

and the shares earned by others. From his 51% participation in

net revenue the shipowner pays two additional shares, one to the

fishing skipper and another one to the machinist, as well as one

half or one quarter of a share”

Our analysis shows that this apparently arbitrary agreement is an optimal

one. In fact, as Theorem 1 shows, the first-best can only be achieved with a

surplus-sharing rule of this form.

Our theory also helps us understand the structure of the sharing contracts.

Consider, instead of fishing, the law, where similar formulas are used. Roughly,

those working in law firms are rewarded in three ways. Many receive a wage,

some receive bonuses, a few enjoy a partnership stake. Partners compensate

associates (and themselves) by first, paying them their hourly wage. What is

left over (which is the surplus) is then divided up among the partners. The

components of this mechanisms are very much in alignment with the ones our

theory leads us to expect.

This type of relational and formal contracts are also relevant between firms.

Consider shopping malls. The sales of each store depend on the decisions of all
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other stores. For instance, the cleanliness and quality of the display of a store

makes each store more attractive. As Gould et al. (2005) show, externalities

between stores are internalized by subsidizing the rents of the stores that

generate mall traffi c for other stores (which requires charging rent premia to

pay for them). Anchor stores, for instance, occupy 58% of the space in an

average mall, but only pay 10% of total rent. What complicates the problem,

as our model highlights, is that the impact of each store, the ability that each

store has to increase its own soles and those of others, is only known to the

store itself.

When should ownership be concentrated or dispersed?

Our analysis also allows us to derive empirically-testable predictions by

exploiting variations in the team production technology. We obtains two main

results in this respect:

a) Single ownership (Proposition 1): When players’efforts vary indepen-

dently from each other across different states (e.g. it is possible for a player’s

effort not to be needed while the other team members need to exert a lot of

effort), then having a single owner/manager is effi cient. Intuitively, that would

be the player for whom bonuses must be largest. By concentrating shares on

her, the reneging temptation is minimized at the lowest cost. Moreover, to

prevent this player from misreporting her information, she must pay bonuses

of her peers in proportion to the effort they are asked to exert. As a result,

this player emerges, endogenously, as a principal. As solution that mirrors

Alchian and Demsetz’s (1972) classic arrangement.

b) Dispersed ownership (Proposition 2): When instead the optimal efforts

of at least some subset of the team are in sync with the overall effort of the

team (e.g. several players in team are essential). Shares should be awarded to

those players who work hardest in those states in which the team as a whole

works hard.

To understand these two results, consider a simple example from a well

known business, the music industry. Consider a single star musician with a

group of backup singers and musicians. Our analysis tells us that ownership

to be concentrated on the main musician, whereas others would receive a fixed

wage and a bonus. Instead, when the performers are a band, so that each one
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of their efforts is necessary, and so these efforts co-move, our theory tells us

that they will be co-owners. By canceling out bonuses in each direction, this

formula minimizes the reneging temptation of all players.
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7 Appendix: The effort provision constraint

and joint deviations

We suppressed the effort provision constraint. When a player either has all

shares, or has no shares, the effort constraint for this player is slack. In this

case, the prospect of losing her bonus following an effort deviation is suffi cient

to induce her to select e∗i (θ).

When instead a player is a partial owner, she my profit from the following

composite deviation: at the reporting stage she reports her highest type (to

maximize the effort chosen by her peers), in the effort selection stage she

selects the effort level that maximizes her share of output αiy minus her effort

cost, and in the bonus payment stage she reneges on all bonuses, after which

she is kicked out of the team. This deviation maximizes the player’s “static”

one-period payoff.

To rule out such deviations we assume that players have the ability to

directly enforce the profile e∗ (m) for any given report m. One possibility is

that players have the ability to post a “bond”that is lost following an effort

deviation. This punishment may represent, for example, a loss of reputation

in the labor market. Another possibility is that players commit to a group

punishment such that any level of shirking leads to all players losing their

output (e.g. Holmstrom, 1982). A final possibility is that players rely on peer

pressure to ensure that, once a profile e∗ (m) has been agreed upon, all players

are compelled to comply (e.g. Kandel and Lazear, 1992).

When the above options are not available, players must rely exclusively on

their relational contract. In this case, a player who shirks is merely kicked

out of the team, therefore losing all her continuation surplus. In the version

of the model without private types, Rayo (2007) shows that the total rela-

tional capital needed to induce first-best efforts is minimized when shares are

dispersed. As a result, when private types are introduced, the reporting con-

straints either leads to a single owner (Proposition 1) and the effort constraint

is slack, or leads to dispersed shares, in which case both the reporting and

effort constrains push the team toward dispersed shares.
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8 Appendix: Proof of Propositions 1 and 2

Proof of Proposition 1. Under Condition 1,

sup
θ
αi
∑
j

e∗j (θ)− e∗i (θ)︸ ︷︷ ︸
bi(θ)

= αi
∑
j 6=i

ej

Therefore, problem (1) simplifies to

min
α

αi
∑
j 6=i

ej

s.t.

α ≥ 0 and
∑
i

αi = 1.

Since the objective is linear in α, to solution is to set αk = 1 for player

k = argmaxi
∑

j 6=i ej and αi = 0 for all other player.

Proof of Proposition 2. Select an arbitrary subset of playersM containing

m ≥ 2 players. When profits shares are divided evenly among them (namely,

αi =
1
m
for all i ∈M) the objective in problem (1) takes the value

∑
i

[
αi
∑
j

e∗j (θ)− e∗i (θ)
]
=
∑
j∈M

sup
θ

[
1

m

∑
i

e∗i (θ)− e∗j (θ)
]
.

When instead all shares are concentrated in the hands of player 1 (the ideal

candidate for single ownership), the objective in problem (1) takes the value

∑
i

[
αi
∑
j

e∗j (θ)− e∗i (θ)
]
=
∑
j 6=1

ej.

Under condition 1, the former value exceeds the latter. As a result, single

ownership is dominated.
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